• Caroline A. Owen
  • Edward J. Campbell


There are several lines of evidence to indicate that proteinases play a critical role in both the pathogenesis and the resolution of the syndrome of acute respiratory distress in adults (ARDS). Firstly, through their capacity to injure endothelial cells, epithelial cells and interstitial structures, proteinases may play major roles in the initiation of lung injury and especially in the pathogenesis of abnormal capillary permeability. Secondly, polymorphonuclear neutrophils, (PMNs) which contain especially potent proteinases, are sequestered in large numbers in the micro-vasculature and air spaces of the lungs in patients with ARDS. Thirdly, abnormal proteinase activity has been well documented in ARDS. Finally, in the resolution/repair phase of ARDS, proteinases are necessary for clearing the proteinaceous debris that fills the alveolar spaces.


Serine Proteinase Cysteine Proteinase Mesothelial Cell Neutrophil Elastase Mononuclear Phagocyte 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Etherington, D.J., Mason, R.W., Taylor, M.A.J. and Wardale, R.J. (1984) Production of a monospecific antiserum to cathepsin L: the histochemical location of enzyme in rabbit fibroblasts. Biosci. Rep., 4, 121–7.PubMedCrossRefGoogle Scholar
  2. 2.
    Blair, H.C., Teitelbaum, S.L., Ghiselli, R. and Gluck, S. (1989) Osteoclastic bone resorption by a polarized vacuolar proton pump. Science, 245, 855–7.PubMedCrossRefGoogle Scholar
  3. 3.
    Neurath, H. (1984) Evolution of proteolytic enzymes. Science, 224, 350–7.PubMedCrossRefGoogle Scholar
  4. 4.
    Sinha, S., Watorek, W., Karr, S. et al. (1987) Primary structure of human neutrophil elas-tase. Proc. Natl Acad. Sci. USA, 84, 2228–32.PubMedCrossRefGoogle Scholar
  5. 5.
    Watorek, W., van Halbeek, H. and Travis, J. (1993) The isoforms of human neutrophil elas-tase and cathepsin G differ in their carbohydrate side chain structures. Biol. Chem. Hoppe-Seyler, 374, 385–93.PubMedCrossRefGoogle Scholar
  6. 6.
    Janoff, A. and Scherer, J. (1968) Mediators of inflammation in leukocyte lysosomes: IX. Elastinolytic activity in granules of human polymorphonuclear leukocytes. J. Exp. Med., 128, 1137–51.PubMedCrossRefGoogle Scholar
  7. 7.
    McDonald, J.A. and Kelley, D.G. (1980) Degradation of fibronectin by human leucocyte elastase: release of biologically active fragments. J. Biol. Chem., 255, 8848–58.PubMedGoogle Scholar
  8. 8.
    Mainardi, C.L., Hasty, D.L., Seyer, J.M. and Kang, A.H. (1988) Specific cleavage of human type III collagen by human polymorphonuclear leukocyte elastase. J. Biol. Chem., 255, 12006–10.Google Scholar
  9. 9.
    Mainardi, C.L., Dixit, S.N. and Kang, A.H. (1980) Degradation of type IV (basement membrane) collagen by a proteinase isolated from human polymorphonuclear leukocyte granules. J. Biol. Chem., 255, 5435–41.PubMedGoogle Scholar
  10. 10.
    Kielty, C.M., Lees, M., Shuttleworth, C.A. and Woolley, D. (1993) Catabolism of intact type VI collagen microfibrils: susceptibility to degradation by serine proteinases. Biochem. Biophys. Res. Commun., 191, 1230–6.PubMedCrossRefGoogle Scholar
  11. 11.
    Keiser, H., Greenwald, R.A., Feinstein, G. and Janoff A. (1976) Degradation of cartilage proteoglycan by human leukocyte granule neutral proteases — a model of joint injury. II. Degradation of isolated bovine nasal cartilage proteoglycan. J. Clin. Invest., 57, 625–32.PubMedCrossRefGoogle Scholar
  12. 12.
    Janoff, A. (1985) State of the art. Elastases and emphysema. Current assessment of the pro-tease-antiprotease hypothesis. Am. Rev. Respir. Dis., 132, 417–33.PubMedGoogle Scholar
  13. 13.
    Havemann, K. and Gramse M. (1984) Physiology and pathophysiology of neutral protein-ases of human granulocytes. Adv. Exp. Med. Biol., 167, 1–21.PubMedCrossRefGoogle Scholar
  14. 14.
    Campanelli, D., Melchior, M., Fu, Y. et al. (1990) Cloning of cDNA for proteinase 3: a serine protease, antibiotic, and autoantigen from human neutrophils. J. Exp. Med., 172, 1709–15.PubMedCrossRefGoogle Scholar
  15. 15.
    Rao, N.V., Wehner, N.G., Marshall, B.C. et al. (1994) Characterization of proteinase-3 (PR-3), a neutrophil serine proteinase. J. Biol. Chem., 266, 9540–8.Google Scholar
  16. 16.
    Salvesen, G., Farley, D., Shuman, J. et al. (1987) Molecular cloning of human cathepsin G: structural similarity to mast cell and cytotoxic T lymphocyte proteinases. Biochemistry, 26: 2289–93.PubMedCrossRefGoogle Scholar
  17. 17.
    Boudier, C., Holle, C. and Bieth, J.G. (1981) Stimulation of the elastolytic activity of leukocyte elastase by leukocyte cathepsin G. J. Biol. Chem., 256, 10256–8.PubMedGoogle Scholar
  18. 18.
    Snyder, R.A., Kaempfer, CE. and Wintroub BU. (1985) Chemistry of a human monocyte-derived cell line (U937): identification of the angiotensin I-converting activity as leukocyte cathepsin G. Blood, 65, 176–82.PubMedGoogle Scholar
  19. 19.
    Elsbach, P. and Weiss, J. (1992) Oxygen-independent antimicrobial systems of phagocytes, in Inflammation. Basic Principles and Clinical Correlates. 2nd edn, (eds J.I. Gallin, I.M. Goldstein and R. Snyderman), Raven Press, New York, pp. 603–36.Google Scholar
  20. 20.
    Selak, M.A., Chignard, M. and Smith, J.B. (1988) Cathepsin G is a strong platelet agonist released by neutrophils. Biochem. J., 251, 293–9.PubMedGoogle Scholar
  21. 21.
    Lovejoy, B., Cleasby, A., Hassell, A.M. et al. (1994) Structure of the catalytic domain of fibroblast collagenase complexed with an inhibitor. Science, 263, 375–7.PubMedCrossRefGoogle Scholar
  22. 22.
    Murphy, G. and Docherty, A.J.P. (1992) The matrix metalloproteinases and their inhibitors. Am. J. Respir. Cell Mol. Biol., 7, 120–5.PubMedCrossRefGoogle Scholar
  23. 23.
    Woessner, J.F Jr. (1991) Matrix metalloproteinases and their inhibitors in connective tissue remodeling. FASEB J., 5, 2145–54.PubMedGoogle Scholar
  24. 24.
    Jiang, W. and Bond, J.S. (1992) Families of metalloendopeptidases and their relationships. FEBS Lett., 312, 110–4.PubMedCrossRefGoogle Scholar
  25. 25.
    Matrisian, L.M. (1992) The matrix-degrading metalloproteinases. Bioessays, 14, 455–63.PubMedCrossRefGoogle Scholar
  26. 26.
    Springman, E.B., Angleton, E.L., Birkedal-Hansen, H. and Van Wart H.E. (1990) Multiple modes of activation of latent human fibroblast collagenase: evidence for the role of a Cys73 active-site zinc complex in latency and a ‘cysteine switch’ mechanism for activation. Proc. Natl Acad. Sci. USA., 87, 364–8.PubMedCrossRefGoogle Scholar
  27. 27.
    Sato, H., Takino, T., Okada, Y. et al. (1994) A matrix metalloproteinase expressed on the surface of invasive tumour cells. Nature, 370, 61–5.PubMedCrossRefGoogle Scholar
  28. 28.
    Reddy, V.Y., Pizzo, S.V. and Weiss, S.J. (1989) Functional inactivation and structural disruption of human alpha 2-macroglobulin by neutrophils and eosinophils. J. Biol. Chem., 264, 13801–9.PubMedGoogle Scholar
  29. 29.
    Desrochers, P.E. and Weiss, S.J. (1988) Proteolytic inactivation of alpha-1-proteinase inhibitor by a neutrophil metalloproteinase. J. Clin. Invest., 81, 1646–50.PubMedCrossRefGoogle Scholar
  30. 30.
    Vissers, M.C.M., George, P.M., Bathurst, I.C. et al. (1988) Cleavage and inactivation of alpha1-antitrypsin by metalloproteinases released from neutrophils. J. Clin. Invest., 82, 706–11.PubMedCrossRefGoogle Scholar
  31. 31.
    Desrochers, P.E., Jeffrey, J.J. and Weiss, S.J. (1991) Interstitial collagenase (matrix metal-loproteinase-1) expresses serpinase activity. J. Clin. Invest., 87, 2258–65.PubMedCrossRefGoogle Scholar
  32. 32.
    Quantin, B., Murphy, G. and Breathnach, R. (1989) Pump-1 cDNA codes for a protein with characteristics similar to those of classical collagenase family members. Biochemistry, 28, 5327–34.PubMedCrossRefGoogle Scholar
  33. 33.
    Murphy, G., Cockett, M.I., Ward, R.V. and Docherty, A.J.P. (1991) Matrix metalloproteinase degradation of elastin, type IV collagen, and proteoglycan. A quantitative comparison of the activities of 95 kDa and 72 kDa gelat-inases, stromelysins-1 and -2 and punctated metalloproteinase (PUMP). Biochem. J., 277, 277–9.PubMedGoogle Scholar
  34. 34.
    Shapiro, S.D., Kobayashi, D.K. and Ley T.J. (1993) Cloning and characterization of a unique elastolytic metalloproteinase produced by human alveolar macrophages. J. Biol. Chem., 268, 23824–9.PubMedGoogle Scholar
  35. 35.
    Gronski, T.J., Kobayashi, D.K. and Shapiro, S.D. (1994) Expression and purification of recombinant human macrophage metallo-elastase: a potent basement membrane degrading enzyme. Am. J. Respir. Crit. Care Med., 149, A370 (abstract).Google Scholar
  36. 36.
    Shi, G.-P, Munger, J.S., Meara, J.P et al. (1992) Molecular cloning and expression of human alveolar macrophage cathepsin S, an elastinolytic cysteine protease. J. Biol. Chem., 267, 7258–62.PubMedGoogle Scholar
  37. 37.
    Chapman, H.A. Jr, Reilly, J.J. Jr, Yee, R. and Mason B. (1987) Synthesis and expression of an elastolytic enzyme, cathepsin L, by human alveolar macrophages. Am. Rev. Respir. Dis., 135, 292A (abstract).Google Scholar
  38. 38.
    Mason, R.W., Johnson, D.A., Barrett, A.J. and Chapman, H.A. Jr (1986) Elastinolytic activity of human cathepsin L. Biochem. J., 233, 925–7.PubMedGoogle Scholar
  39. 39.
    Szecsi, PB. (1992) The aspartic proteases. Scand. J. Clin. Lab. Invest., 52 (suppl. 210), 5–22.CrossRefGoogle Scholar
  40. 40.
    Barrett, A.J. (1980) The many forms and functions of cellular proteinases. Fed. Proc, 39, 9–14.PubMedGoogle Scholar
  41. 41.
    Kao, R.C., Wehner, N.G., Skubitz, K.M. et al. (1988) Proteinase 3. A distinct human polymorphonuclear leukocyte proteinase that produces emphysema in hamsters. J. Clin. Invest., 82, 1963–73.PubMedCrossRefGoogle Scholar
  42. 42.
    Senior, R.M., Griffin, G.L., Fliszar, C.J. et al. (1991) Human 92- and 72-kilodalton type IV collagenases are elastases. J. Biol. Chem., 266, 7870–5.PubMedGoogle Scholar
  43. 43.
    Welgus, H.G., Jeffrey, J.J. and Eisen, A.Z. (1981) The collagen substrate specificity of human skin fibroblast collagenase. J. Biol. Chem., 256, 9511–5.PubMedGoogle Scholar
  44. 44.
    Gross, J. and Nagai, Y (1965) Specific degradation of the collagen molecule by tadpole collagenolytic enzyme. Proc. Natl Acad. Sci. USA, 54, 1197–204.PubMedCrossRefGoogle Scholar
  45. 45.
    Welgus, H.G., Jeffrey, J.J., Stricklin, G.P. and Eisen A.Z. (1982) The gelatinolytic activity of human skin fibroblast collagenase. J. Biol. Chem., 257, 11534–9.PubMedGoogle Scholar
  46. 46.
    Chin, J.R., Murphy, G. and Werb, Z. (1985) Stromelysin, a connective tissue-degrading metalloendopeptidase secreted by stimulated rabbit synovial fibroblasts in parallel with collagenase. J. Biol. Chem., 260, 12367–76.PubMedGoogle Scholar
  47. 47.
    Whitham, S.E., Murphy, G., Angel, P. et al. (1986) Comparison of human stromelysin and collagenase by cloning and sequence analysis. Biochem. J., 240, 913–6.PubMedGoogle Scholar
  48. 48.
    Gadek, J.E., Fells, G.A., Wright, D.G. and Crystal, R.G. (1980) Human neutrophil elas-tase functions as a type III collagen ‘collagenase’. Biochem. Biophys. Res. Commun., 95, 1815–22.PubMedCrossRefGoogle Scholar
  49. 49.
    Pipoly, D.J. and Crouch, E.C. (1987) Degradation of native type IV procollagen by human neutrophil elastase. Implications for leukocyte-mediated degradation of basement membranes. Biochemistry, 26, 5748–54.PubMedCrossRefGoogle Scholar
  50. 50.
    Welgus, H.G., Burgeson, R.E., Wootton, J.A.M. et al. (1985) Degradation of monomeric and fibrillar type III collagens by human skin collagenase: kinetic constants using different animal substrates. J. Biol Chem., 260, 1052–9.PubMedGoogle Scholar
  51. 51.
    Salonen, E.-M., Zitting, A. and Vaheri, A. (1984) Laminin interacts with plasminogen and its tissue-type activator. FEES Lett., 172, 29–32.CrossRefGoogle Scholar
  52. 52.
    Dano, K., Andreasen, P.A., Grondahl-Hansen, J. et al. (1985) Plasminogen activators, tissue degradation, and cancer. Adv. Cancer Res., 44, 139–266.PubMedCrossRefGoogle Scholar
  53. 53.
    Saksela, O. and Rifkin, D.B. (1988) Cell-associated plasminogen activation: regulation and physiological functions. Ann. Rev. Cell Biol., 4, 93–126.PubMedCrossRefGoogle Scholar
  54. 54.
    Kirchheimer, J.C. and Remold, H.G. (1989) Endogenous receptor-bound urokinase mediates tissue invasion of human monocytes. J. Immunol, 143, 2634–9.PubMedGoogle Scholar
  55. 55.
    Stossel, T.P. (1993) On the crawling of animal cells. Science, 260, 1086–94.PubMedCrossRefGoogle Scholar
  56. 56.
    Mason, D.Y., Cramer, E.M., Massé, J.-M. et al. (1991) Alpharantitrypsin is present within the primary granules of human polymorphonuclear leukocytes. Am. J. Pathol, 139, 623–8.PubMedGoogle Scholar
  57. 57.
    Perlmutter, D.H., Kay, R.M., Cole, F.S. et al. (1985) The cellular defect in alpha-1 proteinase inhibitor (alpha-1-PI) deficiency is expressed in human monocytes and in Xeno-pus oocytes injected with human liver mRNA. Proc. Natl Acad. Sci USA, 82, 6918–21.PubMedCrossRefGoogle Scholar
  58. 58.
    Stricklin, G.P. and Welgus, H.G. (1983) Human skin fibroblast collagenase inhibitor: purification and biochemical characterization. J. Biol Chem., 258, 12252–8.PubMedGoogle Scholar
  59. 59.
    Campbell, E.J., Cury, J.D., Lazarus, C.J. and Welgus, H.G. (1987) Monocyte procollagenase and tissue inhibitor of metalloproteinases: identification, characterization, and regulation of secretion. J. Biol. Chem., 262, 15862–8.PubMedGoogle Scholar
  60. 60.
    Marshall, B.C., Santana, A., Xu Q.-P, et al. (1993) Metalloproteinases and tissue inhibitor of metalloproteinases in mesothelial cells. J. Clin. Invest., 91, 1792–9.PubMedCrossRefGoogle Scholar
  61. 61.
    Chapman, H.A. Jr, Reilly, J.J. Jr, Yee, R. and Grubb A. (1990) Identification of cystatin C., a cysteine proteinase inhibitor, as a major secretory product of human alveolar macrophages in vitro. Am. Rev. Respir. Dis., 141, 698–705.PubMedCrossRefGoogle Scholar
  62. 62.
    Dewald, B., Bretz, U. and Baggiolini, M. (1982) Release of gelatinase from a novel secretory compartment of human neutrophils. J. Clin. Invest., 70, 518–25.PubMedCrossRefGoogle Scholar
  63. 63.
    Campbell, E.J., Silverman, E.K. and Campbell, M.A. (1989) Elastase and cathepsin G of human monocytes. Quantification of cellular content, release in response to stimuli, and heterogeneity in elastase-mediated proteolytic activity. J. Immunol, 143, 2961–8.PubMedGoogle Scholar
  64. 64.
    Takahashi, H., Nukiwa, T., Basset, P. and Crystal, R.G. (1988) Myelomonocytic cell lineage expression of the neutrophil elastase gene. J. Biol. Chem., 263, 2543–7.PubMedGoogle Scholar
  65. 65.
    Hanson, R.B., Connolly, N.L., Burnett, D. et al. (1990) Developmental regulation of the human cathepsin G gene in myelomonocytic cells. J. Biol Chem., 265, 1524–30.PubMedGoogle Scholar
  66. 66.
    Sturrock, A.B., Franklin, K.F., Rao, G. et al. (1992) Structure, chromosomal assignment, and expression of the gene for proteinase-3. The Wegener’s granulomatosis autoantigen. J. Biol Chem., 267, 21193–9.PubMedGoogle Scholar
  67. 67.
    Shapiro, S.D., Campbell, E.J., Senior, R.M. and Welgus, H.G. (1991) Proteinases secreted by human mononuclear phagocytes. J. Rheumatol, 27, 95–8.Google Scholar
  68. 68.
    Kargi, H.A., Campbell, E.J. and Kuhn, C. III (1990) Elastase and cathepsin G of human monocytes. Heterogeneity and subcellular localization to peroxidase-positive granules. J. Histochem. Cytochem., 38, 1179–86.PubMedCrossRefGoogle Scholar
  69. 69.
    Campbell, E.J. (1982) Human leukocyte elastase, cathepsin G, and lactoferrin: a family of neutrophil granule glycoproteins which bind to an alveolar macrophage receptor. Proc. Natl Acad. Sci. USA, 79, 6941–5.PubMedCrossRefGoogle Scholar
  70. 70.
    Campbell, E.J., White, R.R., Senior, R.M. et al. (1979) Receptor-mediated binding and internalization of leukocyte elastase by alveolar macrophages in vitro. J. Clin. Invest., 64, 824–33.PubMedCrossRefGoogle Scholar
  71. 71.
    Campbell, E.J. and Wald, M.S. (1983) Fate of human neutrophil elastase following receptor-mediated endocytosis by human alveolar macrophages: implications for connective tissue injury. J. Lab. Clin. Med., 101, 527–36.PubMedGoogle Scholar
  72. 72.
    Owen, C.A., Campbell, M.A., Boukedes, S.S. and Campbell, E.J. (1994) Monocytes recruited to sites of inflammation express a distinctive pro-inflammatory (P) phenotype. Am. J. Physiol, 267, L786–96.Google Scholar
  73. 73.
    Owen, C.A., Campbell, M.A., Boukedes, S.S. et al. (1994) A discrete subpopulation of human monocytes expresses a neutrophil-like proinflammatory (P) phenotype. Am. J. Physiol., 267, L775–85.Google Scholar
  74. 74.
    Campbell, E.J., Cury, J.D., Shapiro, S.D. et al. (1991) Neutral proteinases of human mononuclear phagocytes. Cellular differentiation markedly alters cell phenotype for serine proteinases, metalloproteinases, and TIMP. J. Immunol, 146, 1286–93.PubMedGoogle Scholar
  75. 75.
    White, R.R., Janoff, A., Gordon, R. and Campbell, E.J. (1982) Evidence for in vivo internalization of human leukocyte elastase by human alveolar macrophages. Am. Rev. Respir. Dis., 125, 779–81.PubMedGoogle Scholar
  76. 76.
    Savill, J.S., Henson, P.M. and Haslett, C. (1989) Phagocytosis of aged human neutrophils by macrophages is mediated by a novel ‘charge-sensitive’ recognition mechanism. J. Clin. Invest., 84, 1518–27.PubMedCrossRefGoogle Scholar
  77. 77.
    Campbell, E.J. and Wald, M.S. (1983) Hypoxic injury to human alveolar macrophages accelerates release of previously bound neutrophil elastase: implications for lung connective tissue injury including pulmonary emphysema. Am. Rev. Respir. Dis., 127, 631–5.PubMedGoogle Scholar
  78. 78.
    Chapman, H.A. Jr, Reilly, J.J. Jr and Kobzik, L. (1988) Role of plasminogen activator in degradation of extracellular matrix protein by live human alveolar macrophages. Am. Rev. Respir. Dis., 137, 412–9.PubMedCrossRefGoogle Scholar
  79. 79.
    Waltz, D.A., Sailor, L.Z. and Chapman, H.A. (1993) Cytokines induce urokinase-dependent adhesion of human myeloid cells. A regulatory role for plasminogen activator inhibitors. J. Clin. Invest., 91, 1541–52.PubMedCrossRefGoogle Scholar
  80. 80.
    Gyetko, M.R., Todd, R.F. III, Wilkinson, C.C. and Sitrin R.G. (1994) The urokinase receptor is required for human monocyte Chemotaxis in vitro. J. Clin. Invest., 93, 1380–7.PubMedCrossRefGoogle Scholar
  81. 81.
    Busiek, D.F., Ross, F.P, McDonnell, S. et al. (1992) The matrix metalloprotease matrilysin (PUMP) is expressed in developing human mononuclear phagocytes. J. Biol. Chem., 267, 9087–92.PubMedGoogle Scholar
  82. 82.
    Wahl, L.M. and Corcoran, M.L. (1993) Regulation of monocyte/macrophage metallo-proteinase production by cytokines. J. Periodontal., 64, 467–73.Google Scholar
  83. 83.
    Saarialho-Kere, U.K., Welgus, H.G. and Parks, W.C. (1993) Distinct mechanisms regulate interstitial collagenase and 92-kDa gelatinase expression in human monocytic-like cells exposed to bacterial endotoxin. J. Biol. Chem., 268, 1–8.Google Scholar
  84. 84.
    Shapiro, S.D., Campbell, E.J., Kobayashi, D.K. and Welgus H.G. (1990) Immune modulation of metalloproteinase production in human macrophages. Selective suppression of interstitial collagenase and stromelysin biosynthesis by interferon-gamma. J. Clin. Invest., 86, 1204–10.PubMedCrossRefGoogle Scholar
  85. 85.
    Davis, W.B., Fells, G.A., Sun, X.-H. et al. (1984) Eosinophil-mediated injury to lung parenchymal cells and interstitial matrix. A possible role for eosinophils in chronic inflammatory disorders of the lower respiratory tract. J. Clin. Invest., 74, 269–78.PubMedCrossRefGoogle Scholar
  86. 86.
    Lungarella, G., Menegazzi, R., Gardi, C. et al. (1992) Identification of elastase in human eosinophils: immunolocalization, isolation, and partial characterization. Arch. Biochem. Biophys., 292, 128–35.PubMedCrossRefGoogle Scholar
  87. 87.
    Meier, H.L., Schulman, E.S., Heck, L.W. et al. (1989) Release of elastase from purified human lung mast cells and basophils. Inflammation, 13, 295–308.PubMedCrossRefGoogle Scholar
  88. 88.
    Braun, M.G., Csernok, E., Gross, W.L. and Muller-Hermelink, H.K. (1991) Proteinase 3, the target antigen of anticytoplasmic antibodies circulating in Wegener’s granulomatosis. Immunolocalization in normal and pathologic tissues. Am. J. Pathol, 139, 831–8.PubMedGoogle Scholar
  89. 89.
    Schwartz, L.B., Lewis, R.A., Seidin, D. and Austin, K.F. (1981) Acid hydrolases and tryp-tase from secretory granules of dispersed human lung mast cells. J. Immunol, 126, 1290–6.PubMedGoogle Scholar
  90. 90.
    Gruber, B.L., Schwartz, L.B., Ramamurthy, N.S. et al. (1988) Activation of latent rheumatoid synovial collagenase by human mast cell tryptase. J. Immunol, 140, 3936–42.PubMedGoogle Scholar
  91. 91.
    Gruber, B.L., Marchese, M.J., Suzuki, K. et al. (1989) Synovial procollagenase activation by human mast cell tryptase dependence upon matrix metalloproteinase 3 activation. J. Clin. Invest., 84, 1657–62.PubMedCrossRefGoogle Scholar
  92. 92.
    Niedbala, M.J. (1993) Cytokine regulation of endothelial cell extracellular proteolysis. Agents Actions, 42, 179–93.PubMedGoogle Scholar
  93. 93.
    Mayet, W.J., Csernok, E., Szymkowiak, C. et al. (1993) Human endothelial cells express proteinase 3, the target antigen of anti-cytoplasmic antibodies in Wegener’s granulomatosis. Blood, 82, 1221–9.PubMedGoogle Scholar
  94. 94.
    Desrivieres, S., Lu, H., Peyri, N. et al. (1993) Activation of the 92 kDa type IV collagenase by tissue kallikrein. J. Cell. Physiol., 157, 587–93.PubMedCrossRefGoogle Scholar
  95. 95.
    Herron, G.S., Banda, M.J., Clark, E.J. et al. (1986) Secretion of metalloproteinases by stimulated capillary endothelial cells. II. Expression of collagenase and stromelysin activities is regulated by endogenous inhibitors. J. Biol Chem., 261, 2814–8.PubMedGoogle Scholar
  96. 96.
    Herron, G.S., Werb, Z., Dwyer, K. and Banda, M.J. (1986) Secretion of metalloproteinases by stimulated capillary endothelial cells. I. Production of procollagenase and prostromelysin exceeds expression of proteolytic activity. J. Biol Chem., 261, 2810–3.PubMedGoogle Scholar
  97. 97.
    Birkedal-Hansen, H., Moore, WGI, Bodden, M.K. et al. (1993) Matrix metalloproteinases: A review. Crit. Rev. Oral Biol. Med., 4, 197–250.PubMedGoogle Scholar
  98. 98.
    Marshall, B.C., Sageser, D.S., Rao, N.V. et al. (1990) Alveolar epithelial cell plasminogen activator. Characterization and regulation. J. Biol. Chem., 265, 8198–204.PubMedGoogle Scholar
  99. 99.
    Sallenave, J.-M., Silva, A., Marsden, M.E. and Ryle, A.P. (1993) Secretion of mucus proteinase inhibitor and elahn by Clara cell and type II pneumocyte cell lines. Am. J. Respir. Cell Mol Biol., 8, 126–33.PubMedCrossRefGoogle Scholar
  100. 100.
    De Water, R., Willems, L.N.A., Van Muijen, G.N.P. et al. (1986) Ultrastructural localization of bronchial antileukoprotease in central and peripheral human airways by a gold-labeling technique using monoclonal antibodies. Am. Rev. Respir. Dis., 133, 882–90.PubMedGoogle Scholar
  101. 101.
    Travis, J. and Salvesen, G.S. (1983) Human plasma proteinase inhibitors. Annu. Rev. Bio-chem., 52, 655–709.CrossRefGoogle Scholar
  102. 102.
    Carrell, R.W. (1986) Alpharantitrypsin: molecular pathology, leukocytes, and tissue damage. J. Clin. Invest., 78, 1427–31.PubMedCrossRefGoogle Scholar
  103. 103.
    Campbell, E.J., Senior, R.M., McDonald, J.A. and Cox, D.L. (1982) Proteolysis by neutrophils. Relative importance of cell-substrate contact and oxidative inactivation of proteinase inhibitors in vitro. J. Clin. Invest., 70, 845–52.CrossRefGoogle Scholar
  104. 104.
    Campbell, E.J. and Campbell, M.A. (1987) Proteolysis by neutrophils while in contact with substrate: incomplete protection of substrate by proteinase inhibitors, in Pulmonary Emphysema and Proteolysis, Vol. II (eds C. Mittman and J.C. Taylor), Academic Press, New York, pp. 235–44.Google Scholar
  105. 105.
    Campbell, E.J. and Campbell, M.A. (1988) Pericellular proteolysis by neutrophils in the presence of proteinase inhibitors: effects of substrate opsonization. J. Cell Biol., 106, 667–76.PubMedCrossRefGoogle Scholar
  106. 106.
    Senior, R.M., Connolly, N.L., Cury, J.D. et al. (1989) Elastin degradation by human alveolar macrophages: a prominent role of metallo-proteinase activity. Am. Rev. Respir. Dis., 139, 1251–6.PubMedCrossRefGoogle Scholar
  107. 107.
    Johnson, K.J. and Varani, J. (1981) Substrate hydrolysis by immune complex-activated neutrophils: effect of physical presentation of complexes and protease inhibitors. J. Immunol, 127, 1875–9.PubMedGoogle Scholar
  108. 108.
    Weiss, S.J. and Regiani, S. (1984) Neutrophils degrade subendothelial matrices in the presence of alpha-1-proteinase inhibitor: cooperative use of lysosomal proteinases and oxygen metabolities. J. Clin. Invest., 73, 1297–303.PubMedCrossRefGoogle Scholar
  109. 109.
    Ossanna, P.J., Test, S.T., Matheson, N.R. et al. (1986) Oxidative regulation of neutrophil elas-tase-alpha-1 -proteinase inhibitor interactions. J. Clin. Invest., 77, 1939–51.PubMedCrossRefGoogle Scholar
  110. 110.
    Weiss, S.J., Curnutte, J.T. and Regiani, S. (1986) Neutrophil-mediated solubilization of the subendothelial matrix: oxidative and non-oxidative mechanisms of proteolysis used by normal and chronic granulomatous disease phagocytes. J. Immunol, 136, 636–41.PubMedGoogle Scholar
  111. 111.
    Sibille, Y, Lwebuga-Mukasa, J.S., Palomski, L. et al. (1986) An in vitro model for poly-morphonuclear-leukocyte-induced injury to an extracellular matrix: relative contribution of oxidants and elastase to fibronectin release from amniotic membranes. Am. Rev. Respir. Dis., 134, 134–40.PubMedGoogle Scholar
  112. 112.
    Weitz, J.I., Huang, A.J., Landman, S.L. et al. (1988) Elastase-mediated fibrinogenolysis by chemoattractant-stimulated neutrophils occurs in the presence of physiologic concentrations of antiproteinases. J. Exp. Med., 166, 1838–50.Google Scholar
  113. 113.
    Schalkwijk, J., Van den Berg, W.B., Van de Putte, L.B.A. and Joosten, L.A.B. (1987) Elastase secreted by activated polymorphonuclear leucocytes causes chondrocyte damage and matrix degradation in intact articular cartilage: escape from inactivation by alpha-1-proteinase inhibitor. Br. J. Exp. Pathol, 68, 81–8.PubMedGoogle Scholar
  114. 114.
    Rice, W.G. and Weiss, S.J. (1990) Regulation of proteolysis at the neutrophil-substate interface by secretory leukoprotease inhibitor. Science, 249, 178–81.PubMedCrossRefGoogle Scholar
  115. 115.
    Chapman, H.A. Jr and Stone, O.L. (1984) Comparison of live human neutrophil and alveolar macrophage elastolytic activity in vitro. Relative resistance of macrophage elastolytic activity to serum and alveolar proteinase inhibitors. J. Clin. Invest., 74, 1693–700.PubMedCrossRefGoogle Scholar
  116. 116.
    Chapman, H.A. Jr and Stone, O.L. (1984) Cooperation between plasmin and elastase in elastin degradation by intact murine macrophages. Biochem. J., 222, 721–8.PubMedGoogle Scholar
  117. 117.
    Chapman, H.A. Jr, Stone, O.L. and Vavrin, Z. (1984) Degradation of fibrin and elastin by intact human alveolar macrophages in vitro. Characterization of plasminogen activator and its role in matrix degradation. J. Clin. Invest., 73, 806–15.PubMedCrossRefGoogle Scholar
  118. 118.
    Plow, E.F., Freaney, D.E., Plescia, J. and Miles, L.A., (1986) The plasminogen system and cell surfaces: evidence for plasminogen and urokinase receptors on the same cell type. J. Cell Biol., 103, 2411–20.PubMedCrossRefGoogle Scholar
  119. 119.
    Wright, S.D. and Silverstein, S.C. (1984) Phagocytosing macrophages exclude proteins from zones of contact with targets. Nature, 309, 359–61.PubMedCrossRefGoogle Scholar
  120. 120.
    Campbell, E.J. (1986) Preventive therapy of emphysema: lessons from the elastase model. Am. Rev. Respir. Dis., 134, 435–7.PubMedGoogle Scholar
  121. 121.
    Desrochers, P.E., Mookhtiar, K., Van Wart, H.E. et al. (1992) Proteolytic inactivation of alpha 1-proteinase inhibitor and alpha 1-antichymotrypsin by oxidatively activated human neutrophil metalloproteinases. J. Biol. Chem., 267, 5005–12.PubMedGoogle Scholar
  122. 122.
    Reddy, V.Y., Desrochers, P.E., Pizzo, S.V. et al. (1994) Oxidative dissociation of human alpha 2-macroglobulin tetramers into dysfunctional dimers. J. Biol. Chem., 269, 4683–91.PubMedGoogle Scholar
  123. 123.
    Kramps, J.A., Van Twisk, C., Appelhans, H. et al. (1990) Proteinase inhibitory activities of antileukoprotease are represented by its second COOH-terminal domain. Biochim. Biophys. Acta, 1038, 178–85.PubMedCrossRefGoogle Scholar
  124. 124.
    Vissers, M.C.M., Day, W.A. and Winterbourn, C.C. (1985) Neutrophils adherent to a non-phagocytosable surface (glomerular basement membrane) produce oxidants only at the site of attachment. Blood, 66, 161–6.PubMedGoogle Scholar
  125. 125.
    Chen, W.-T. (1992) Membrane proteases: roles in tissue remodeling and tumour invasion. Curr. Opin. Cell Biol., 24947, 26992–8526.Google Scholar
  126. 126.
    Csernok, E., Ernst, M., Schmitt, W. et al. (1994) Activated neutrophils express proteinase 3 on their plasma membrane in vitro and in vivo. Clin. Exp. Immunol, 95, 244–50.CrossRefGoogle Scholar
  127. 127.
    Gross, W.L., Csernok, E. and Flesch, B.K. (1993) ‘Classic’ anti-neutrophil cytoplasmic autoantibodies (cANCA), ‘Wegener’s auto-antigen’ and their immunopathogenic role in Wegener’s granulomatosis. J. Autoimmun., 6, 171–84.PubMedCrossRefGoogle Scholar
  128. 128.
    Lavie, G., Zucker-Franklin, D. and Franklin, E.C. (1980) Elastase-type proteases on the surface of human blood monocytes: possible role in amyloid formation. J. Immunol, 125, 175–80.PubMedGoogle Scholar
  129. 129.
    Zucker-Franklin, D., Lavie, G. and Franklin, E.C. (1981) Demonstration of membrane-bound proteolytic activity on the surface of mononuclear leukocytes. J. Histochem. Cyto-chem., 29, 451–6.CrossRefGoogle Scholar
  130. 130.
    Pollanen, J., Hedman, K., Nielsen, L.S. et al. (1988) Ultrastructural localization of plasma membrane-associated urokinase-type plasminogen activator at focal contacts. J. Cell Biol., 106, 87–95.PubMedCrossRefGoogle Scholar
  131. 131.
    Chapman, H.A. Jr, Vavrin, Z. and Hibbs, J.B. (1982) Macrophage fibrinolytic activity: identification of two pathways of plasmin formation by intact cells and of a plasminogen activator inhibitor. Cell, 28, 653–62.PubMedCrossRefGoogle Scholar
  132. 132.
    Nielsen, L.S., Kellerman, G.M., Behrendt, N. et al. (1988) A 55 000–60 000 Mr receptor protein for urokinase-type plasminogen activator. Identification in human tumor cell lines and partial purification. J. Biol. Chem., 263, 2358–63.PubMedGoogle Scholar
  133. 133.
    Pollanen, J., Saksela, O., Salonen, E. et al. (1987) Distinct localizations of urokinase-type plasminogen activator and its type 1 inhibitor under cultured human fibroblasts and sarcoma cells. J. Cell Biol., 104, 1085–96.PubMedCrossRefGoogle Scholar
  134. 134.
    Ellis, V, Wun, T.-C, Behrendt, N. et al. (1990) Inhibition of receptor-bound urokinase by plasminogen-activator inhibitors. J. Biol Chem., 265, 9904–8.PubMedGoogle Scholar
  135. 135.
    Picone, R., Kajtaniak, E.L., Nielsen, L.S. et al. (1989) Regulation of urokinase receptors in monocytelike U937 cells by phorbol ester phorbol myristate acetate. J. Cell Biol., 108, 693–702.PubMedCrossRefGoogle Scholar
  136. 136.
    Chapman, H.A. Jr, Bertozzi, P., Sailor, L.Z. and Nusrat, A.R. (1990) Alveolar macrophage urokinase receptors localize enzyme activity to the cell surface. Am. J. Physiol, 3, L432–8.Google Scholar
  137. 137.
    Ellis, V, Scully, M.F. and Kakkar, V.V. (1989) Plasminogen activation initiated by single-chain urokinase type plasminogen activator. Potentiation by U937 monocytes. J. Biol Chem.264, 2185–8.PubMedGoogle Scholar
  138. 138.
    Morrison, H.M., Welgus, H.G., Stockley, R.A. et al. (1990) Inhibition of human leukocyte elastase bound to elastin: relative ineffectiveness and two mechanisms of inhibitory activity. Am. J. Resmr. Cell Mol Biol., 2, 263–9.CrossRefGoogle Scholar
  139. 139.
    Bruch, M. and Bieth, J.G. (1986) Influence of elastin on the inhibition of leucocyte elastase by alpharproteinase inhibitor and bronchial inhibitor. Potent inhibition of elastin-bound elastase by bronchial inhibitor. Biochem. J., 238, 269–73.PubMedGoogle Scholar
  140. 140.
    Kolev, K., Lerant, I., Tenekejiev, K. and Machovich, R. (1994) Regulation of fibrinolytic activity of neutrophil leukocyte elastase, plasmin, and miniplasmin by plasma protease inhibitors. J. Biol Chem., 269, 17030–4.PubMedGoogle Scholar
  141. 141.
    Peterson, M.W. (1989) Neutrophil cathepsin G increases transendothelial albumin flux. J. Lab. Clin. Med., 113, 297–308.PubMedGoogle Scholar
  142. 142.
    Laposata, M., Dovnarsky, D.K. and Shin, H.S. (1983) Thrombin-induced gap formation in confluent endothelial cell monolayers in vitro. Blood, 62, 549–56.PubMedGoogle Scholar
  143. 143.
    Rochat, T.R., Casale, J.M., Hunninghake, G.W. and Peterson, M.W. (1988) Neutrophil cathepsin G increases permeability of cultured type II pneumocytes. Am. J. Physiol, 24, C603–11.Google Scholar
  144. 144.
    Garcia, J.G.N., Siflinger-Birnboim, A., Bizios, R. et al. (1986) Thrombin-induced increase in albumin permeability across the endothelium. J. Cell. Physiol, 128, 96–104.PubMedCrossRefGoogle Scholar
  145. 145.
    Sugahara, K., Cott, G.R., Parsons, P.E. et al. (1986) Epithelial permeability produced by phagocytosing neutrophils in vitro. Am. Rev. Resmr. Dis., 133, 875–61.Google Scholar
  146. 146.
    Harlan, J.M. (1985) Leukocyte-endothelial interactions. Blood, 65, 513–25.PubMedGoogle Scholar
  147. 147.
    Smedly, L.A., Tonnesen, M.G., Sandhaus, R.A. et al. (1986) Neutrophil-mediated injury to endothelial cells. Enhancement by endotoxin and essential role of neutrophil elastase. J. Clin. Invest., 77, 1233–43.PubMedCrossRefGoogle Scholar
  148. 148.
    Brown, D.M., Brown, G.M., MacNee, W. and Donaldson, K. (1992) Activated human peripheral blood neutrophils produce epithelial injury and fibronectin breakdown in vitro. Inflammation, 16, 21–30.PubMedCrossRefGoogle Scholar
  149. 149.
    Stokke, T., Burchardi, H., Hensel, I. and Horl, W.H. (1985) Experimental studies on the adult respiratory distress syndrome: effects of induced DIC; granulocytes and elastase in mini pigs. Eur. J. Clin. Invest., 15, 415–21.PubMedCrossRefGoogle Scholar
  150. 150.
    Seiler, M.W., Rennke, H.G., Venkatachalam, M.B. and Cotran, R.S. (1977) Pathogenesis of poly cation-induced alterations (‘fusion’) of glomerular epithelium. Lab. Invest., 36, 48–61.PubMedGoogle Scholar
  151. 151.
    Peterson, M.W., Clark, R., Stone, P. and Shasby, D.M. (1985) Neutrophil cationic protein increases endothelial albumin transport. Am. Rev. Resmr. Dis., 131, A421 (abstract).Google Scholar
  152. 152.
    Vehaskari, V.M., Chang, C.T.-C, Stevens, J.K. and Robson A.M. (1984) The effects of poly-cations on vascular permeability in the rat. A proposed role for charge sites. J. Clin. Invest., 73, 1053–61.PubMedCrossRefGoogle Scholar
  153. 153.
    Nagy, Z., Peters, H. and Huttner, G. (1983) Charge-related alterations of the cerebral endothelium. Lab. Invest., 49, 662–71.PubMedGoogle Scholar
  154. 154.
    Demling, R.H. (1988) The role of mediators in human ARDS J. Crit. Care., 3, 56–72.CrossRefGoogle Scholar
  155. 155.
    Crouch, E., Moxley, M.A. and Longmore, W. (1987) Synthesis of collagenous proteins by pulmonary type II epithelial cells. Am. Rev. Resmr. Dis., 135, 1118–23.Google Scholar
  156. 156.
    Pipoly, D. and Crouch, E. (1986) Degradation of basement membrane collagen by human leukocyte elastase and hydrogen peroxide. Am. Rev. Resmr. Dis., 133, A258.Google Scholar
  157. 157.
    Senior, R.M. and Campbell, E.J. (1983) Neutral proteinases from human inflammatory cells: a critical review of their role in extracellular matrix degradation. Clin. Lab. Med., 3, 645–66.PubMedGoogle Scholar
  158. 158.
    Campbell, E.J., Senior, R.M. and Welgus, H.G. (1987) Extracellular matrix injury during lung inflammation. Chest, 92, 161–7.PubMedCrossRefGoogle Scholar
  159. 159.
    Sires, U.I., Griffin, G.L., Broekelmann, T.J. et al. Degradation of entactin by matrix metal-loproteinases. Susceptibility to matrilysin and identification of cleavage sites. J. Biol. Chem., 268, 2069–74.Google Scholar
  160. 160.
    Crapo, J.D., Barry, B.E., Gehr, P. et al. (1982) Cell number and cell characteristics of the normal human lung. Am. Rev. Respir. Dis.125, 332–7Google Scholar
  161. 161.
    Rinaldo, J.E. and Rogers, R.M. (1982) Adult respiratory distress syndrome. Changing concepts of lung injury and repair. N. Engl. J. Med., 306, 900–9.PubMedCrossRefGoogle Scholar
  162. 162.
    Warshawaki, R.J., Sibbald, W.J., Driedger, A.A. and Cheung, H. (1986) Abnormal neu-trophil-pulmonary interaction in the adult respiratory distress syndrome. Qualitative and quantitative assessment of pulmonary neutrophil kinetics in humans with the in vivo indium-111 neutrophil scintigraphy. Am. Rev. Respir. Dis., 122, 797–804.Google Scholar
  163. 163.
    Lee, C., Fein, A., Lippmann, M. et al. (1981) Elastolytic activity in pulmonary lavage fluid from patients with adult respiratory-distress syndrome. N. Engl. J. Med., 304, 192–6.PubMedCrossRefGoogle Scholar
  164. 164.
    Weiland, J., Davis, W.B., Holter, et al. (1986) Lung neutrophils in the adult respiratory distress syndrome. Am. Rev. Respir. Dis., 133, 218–25.PubMedGoogle Scholar
  165. 165.
    Fowler, A.A., Hyers, T.M., Fisher, B.J. et al. (1987) The adult respiratory distress syndrome. Cell populations and soluble mediators in the air spaces of patients at high risk. Am. Rev. Respir. Dis., 136, 1225–31.PubMedCrossRefGoogle Scholar
  166. 166.
    Christner, P., Fein, A., Goldberg, S. et al. (1985) Collagenase in the lower respiratory-tract of patients with adult respiratory-distress syndrome. Am. Rev. Respir. Dis., 131, 690–5.PubMedGoogle Scholar
  167. 167.
    Hallgren, R., Borg, T., Venge, P. and Modig, J. (1984) Signs of neutrophil and eosinophil activation in adult respiratory distress syndrome. Crit. Care Med., 12, 14–8.PubMedCrossRefGoogle Scholar
  168. 168.
    Baldwin, S.R., Simon, R.H., Grum, C.M. et al. (1986) Oxidant activity in expired breath of patients with adult respiratory distress syndrome. Lancet, i, 11–4.CrossRefGoogle Scholar
  169. 169.
    Zheutlin, L.M., Thonar, J.-M.A., Jacobs, E.R. et al. (1986) Plasma elastase levels in the adult respiratory distress syndrome. J. Crit. Care, 1, 39–44.CrossRefGoogle Scholar
  170. 170.
    Speer, C.P., Ruess, D., Harms, K. et al. (1993) Neutrophil elastase and acute pulmonary damage in neonates with severe respiratory distress syndrome. Pediatrics, 91, 794–9.PubMedGoogle Scholar
  171. 171.
    Cochrane, C.G., Spragg, R.G., Revak, S.D. et al. (1983) The presence of neutrophil elastse and evidence of oxidation activity in broncho-alveolar lavage fluid of patients with adult respiratory distress syndrome. Am. Rev. Respir. Dis., 127, S25–7.Google Scholar
  172. 172.
    McGuire, W.W., Spragg, R.G., Cohen, A.B. and Cochrane, C.G. (1982) Studies on the pathogenesis of the adult respiratory distress syndrome. J. Clin. Invest., 69, 543–53.PubMedCrossRefGoogle Scholar
  173. 173.
    Kawamura, M., Yamasawa, F., Ishizaka, A. et al. (1994) Serum concentration of 7S collagen and prognosis in patients with the adult respiratory distress syndrome. Thorax, 49, 144–6.PubMedCrossRefGoogle Scholar
  174. 174.
    Kondoh, Y., Taniguchi, H., Taki, F. et al. (1992) 7S collagen in bronchoalveolar lavage fluid of patients with adult respiratory distress syndrome. Chest, 101, 1091–4.PubMedCrossRefGoogle Scholar
  175. 175.
    Idell, S., James, J.K., Levin, E.G. et al. (1989) Local abnormalities in coagulation and fibrinolytic pathways predispose to alveolar fibrin deposition in the adult respiratory distress syndrome. J. Clin. Invest., 84, 695–705.PubMedCrossRefGoogle Scholar
  176. 176.
    Idell, S., Kucich, U., Fein, A. et al. (1985) Neutrophil elastase-releasing factors in bronchoalveolar lavage from patients with adult respiratory distress syndrome. Am. Rev. Respir. Dis., 132, 1098–105.PubMedGoogle Scholar
  177. 177.
    Idell, S., Gonzalez, K., Bradford, H. et al. (1987) Procoagulant activity in bronchoalveolar lavage in the adult respiratory distress syndrome. Am. Rev. Respir. Dis., 136, 1466–74.PubMedCrossRefGoogle Scholar
  178. 178.
    Bertozzi, P., Astedt, B., Zenzius, L. et al. (1990) Depressed bronchoalveolar urokinase activity in patients with adult respiratory distress syndrome. N. Engl. J. Med., 322, 890–7.PubMedCrossRefGoogle Scholar
  179. 179.
    Pratt, P. (1978) Pathology of adult respiratory distress syndrome, in The Lung: Structure Function, and Disease (eds W.M. Thurlbeck and M.R. Abell), Williams & Wilkins, Baltimore, pp. 45–7.Google Scholar
  180. 180.
    Bassett, F., Ferrans, V.J., Soler, P., et al. (1986) Intraluminal fibrosis in interstitial lung disorders. Am. J. Pathol, 122, 443–61.Google Scholar
  181. 181.
    Zapol, W.M., Trelstad, R.L., Coffey, J.W. et al. (1979) Pulmonary fibrosis in severe acute respiratory failure. Am. Rev. Respir. Dis., 119, 547–54.PubMedGoogle Scholar
  182. 182.
    Elliot, C.G., Morris, A.H. and Cengiz M. (1981) Pulmonary function and exercise gas exchange in survivors of adult respiratory distress syndrome. Am. Rev. Respir. Dis., 123, 492–5.Google Scholar
  183. 183.
    Alberts, W.M., Priest, G.R. and Moser, K.M. (1983) The outlook for survivors of ARDS. Chest, 84, 272–4.PubMedCrossRefGoogle Scholar
  184. 184.
    Peters, J.I., Bell, R.C., Prihoda, T.J. et al. (1989) Clinical determinants of abnormalities in pulmonary functions in survivors of the adult respiratory distress syndrome. Am. Rev. Respir. Dis., 139, 1163–8.PubMedCrossRefGoogle Scholar
  185. 185.
    Gossage, J.R., Kuratomi, Y, Davidson, J.M. et al. (1993) Neutrophil elastase inhibitors, SC-37698 and SC-39026, reduce endotoxin-induced lung dysfunction in awake sheep. Am. Rev. Respir. Dis., 147, 1371–9.PubMedCrossRefGoogle Scholar
  186. 186.
    Ahn, C.M., Sandler, H., Glass, M. and Saldeen, T. (1993) Effect of a synthetic leukocyte elastase inhibitor on thrombin-induced pulmonary edema in the rat. Exp. Lung Res., 19, 125–35.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 1996

Authors and Affiliations

  • Caroline A. Owen
  • Edward J. Campbell

There are no affiliations available

Personalised recommendations