Image registration

  • D. J. Hawkes

Abstract

Image registration has emerged as an important application of computational methodology in medical imaging, and particularly so in nuclear medicine. The process allows information derived from one imaging source to be related to information from another. In other application areas such as surveillance, defence and remote sensing this combination of information is often termed ‘data fusion’. Image registration methodologies are also being applied to areas of medicine using technologies of virtual reality, augmented reality and telepresence in, for example, image-guided surgery and other interventions.

Keywords

Entropy Attenuation Fluoride Expense Ghost 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Collins, D.L., Peters, T.M. and Evans, A.C. (1994) An automated 3D non-linear image deformation procedure for determination of gross morphometric variability in human brain, in Visualisation in Biomedical Computing 1994 (ed. R.A. Robb), International Society for Optical Engineering, Washington, DC, pp. 180–90.Google Scholar
  2. 2.
    Saffer, J.R., Barrett, H.H., Barber, H.B. and Woolfenden, J.M. (1991) Surgical probe design for a coincidence imaging system without a collimator, in Information Processing in Medical Imaging (eds A.C.F. Colchester and D.J. Hawkes), Springer, 1991, pp. 8–22.CrossRefGoogle Scholar
  3. 3.
    Hawkes, D.J., Robinson, L., Crossman, J.E. et al. (1991) Registration and display of the combined bone scan and radiograph in the diagnosis and management of wrist injuries. Eur. J. Nucl. Med., 18, 752–6.PubMedCrossRefGoogle Scholar
  4. 4.
    Hill, D.L.G., Hawkes, D.J., Studholme, C., Summers, P.E. and Taylor, M.G. (1994) Accurate registration and transformation of temporal image sequences. Proc. Soc. Magnetic Resonance, 2, 830 (abstract).Google Scholar
  5. 5.
    Hajnal, J.V., Saeed, N., Oatridge, A., Williams, E.J., Young, I.R. and Bydder, G.M. (1995) Detection of subtle brain changes using subvoxel registration and subtraction of serial MR images. J. Corn-put. Assist. Tomogr., 19, 677–91.CrossRefGoogle Scholar
  6. 6.
    Pietrzyk, U., Herholz, K. and Heiss, W. (1990) Three dimensional alignment of functional and morphological tomograms. J. Comput. Assist. Tomogr., 14, 51–9.PubMedCrossRefGoogle Scholar
  7. 7.
    Evans, A.C., Beil, C., Marrett, S., Thompson, C.J. and Hakim, A. (1988) Anatomical-functional correlation using an adjustable MRI-based region of interest atlas with positron emission tomography. J. Cereb. Blood Flow Metab., 8, 513–29.PubMedCrossRefGoogle Scholar
  8. 8.
    Bergstrom, M. (1981) Head fixation device for reproducible position alignment in transmission CT and PET. J. Comput. Assist. Tomogr., 5, 136–41.PubMedCrossRefGoogle Scholar
  9. 9.
    Schad, L.R., Boesecke, R., Schlegel, W. et al. (1987) Three dimensional image correlation of CT, MR and PET studies in radiotherapy planning of brain tumours. J. Comput. Assist. Tomogr., 11, 948–54.PubMedCrossRefGoogle Scholar
  10. 10.
    Thomas, D.G.T., Gill, S.S., Wilson, C.B., Darling, J.L. and Parkins, CS. (1990) Use of a relocatable stereotactic frame to integrate positron emission tomography and computed tomography images: application in human malignant brain tumours. Stereotact. Fund. Neurosurg., 54/55, 388–92.CrossRefGoogle Scholar
  11. 11.
    West, J., Fitzpatrick, J.M., Wang, M.Y. et al. (1996) Comparison and evaluation of retrospective intermodality image registration techniques, in SPIE Medical Imaging1996, International Society for Optical Engineering, pp. 332–47.Google Scholar
  12. 12.
    Schoenemann, P.H. (1966) A generalised solution to the orthogonal Procrustes problem. Psychometrica, 31, 1–10.CrossRefGoogle Scholar
  13. 13.
    Arun, K.S., Huang, T.S. and Blostein, S.D. (1987) Least squares fitting of two 3D point sets. IEEE Transactions on Pattern Analysis and Machine Intelligence, PAMI-9, 698–700.PubMedCrossRefGoogle Scholar
  14. 14.
    Hill, D.L.G., Hawkes, D.J., Crossman, J.E. et al. (1991) Registration of MR and CT images for skull base surgery using point-like anatomical features. Br. J. Radiol, 64, 1030–5.PubMedCrossRefGoogle Scholar
  15. 15.
    Wong, W.L., Hussain, K., Chevretton, E. et al. (1997) Validation and clinical application of computer-combined computed tomography and positron emission tomography with 2-[18F]fluoro-2-deoxy-D-glucose head and neck images. Am. J. Surg., 172, 628–32.CrossRefGoogle Scholar
  16. 16.
    Hawkes, D.J., Hill, D.L.G. and Bracey, E.C.M.L. (1992) Multi-modal data fusion to combine anatomical and physiological information in the head and heart, in Cardiovascular Nuclear Medicine and MRT. Quantitation and Clinical Applications (eds J.H.C. Reiber and E.E. van der Wall), Kluwer Academic Publishers, Dordrecht, Boston, London, pp. 113–30.CrossRefGoogle Scholar
  17. 17.
    Fleming, J.S. (1989) A technique for using CT images in attenuation correction and quantification in SPECT. Nucl. Med. Commun., 10, 83–97.PubMedCrossRefGoogle Scholar
  18. 18.
    Pelizzari, CA., Chen, G.T.Y., Speibring, D.R., Weichselbaum, R.R. and Chen, C. (1989) Accurate three dimensional registration of CT, PET and/or MR images of the brain. J. Comput. Assist. Tomogr., 13, 20–6.PubMedCrossRefGoogle Scholar
  19. 19.
    Faber, T.L., McColl, R.W., Opperman, R.M., Corbett, J.R. and Peshock, R.M. (1991) Spatial and temporal registration of cardiac SPECT and MR images: methods and evaluation. Radiology, 179, 857–61.PubMedGoogle Scholar
  20. 20.
    Jiang, H., Robb, R.A. and Holton, K.S. (1992) New approach to 3-D registration of multimodality medical images by surface matching. International Society for Optical Engineering (SPIE), 1808, 196–213.Google Scholar
  21. 21.
    Robb, R.A. and Barillot, C. (1989) Interactive display and analysis of 3D medical images. IEEE Transactions on Medical Imaging, 8, 217–26.PubMedCrossRefGoogle Scholar
  22. 22.
    Hill, D.L.G. and Hawkes, D.J. (1994) Medical image registration using knowledge of adjacency of anatomical structures. Image and Vision Computing, 12, 173–8.CrossRefGoogle Scholar
  23. 23.
    Malandain, G., Fernandez, M.A. and Rocchisani, J.M. (1994) Rigid registration of 3-D objects by motion analysis. Proceedings, 12th International Conference on Pattern Recognition, pp. 579–81.Google Scholar
  24. 24.
    Gamboa-Aldeco, A., Fellingham, L.L. and Chen, G.T.Y. (1986) Correlation of 3D surfaces from multiple modalities in medical imaging. Proceedings, International Society for Optical Engineering (SPIE), vol. 626, pp. 467–73.Google Scholar
  25. 25.
    Maguire, G.Q., Noz, M.E., Lee, E.M. and Schimpf, J.H. (1986) Correlation methods for tomographic images using two and three dimensional techniques, in Information Processing in Medical Imaging (ed. S. Bacharach), Martinus Nijhoff, Dordrecht, Netherlands, pp. 266–79.CrossRefGoogle Scholar
  26. 26.
    Woods, R.P., Cherry, S.R. and Mazziotta, J.C. (1992) Rapid automated algorithm for aligning and reslicing PET images. J. Comput. Assist. Tomogr., 16, 620–33.PubMedCrossRefGoogle Scholar
  27. 27.
    Woods, R.P., Mazziotta, J.C. and Cherry, S.R. (1993) MRI PET registration with automated algorithm. J. Comput. Assist. Tomogr., 17, 536–46.PubMedCrossRefGoogle Scholar
  28. 28.
    Hill, D.L.G., Studholme, C. and Hawkes, D.J. (1994) Voxel similarity measures for automated image registration, in Visualisation in Biomedical Computing 1994 (ed. R.A. Robb), International Society for Optical Engineering, vol. 2359, pp. 205–16.Google Scholar
  29. 29.
    Van den Elsen, P.A., Pol, E.J.D., Sumanaweera, T.S., Hemler, P.F., Napel, S. and Adler, J.R. (1994) Grey value correlation techniques used for automatic matching of CT and MR volume images of the head, in Visualisation in Biomedical Computing 1994 (ed. R.A. Robb), International Society for Optical Engineering, vol. 2359, pp. 227–37.Google Scholar
  30. 30.
    Studholme, C., Hill, D.L.G, and Hawkes, D.J. (1995) Multiresolution voxel similarity measures for MR-PET registration, in Information Processing in Medical Imaging (IPMI ‘95) (eds Y. Bizais, C. Barillot and R. Di Paola), Kluwer, Dordrecht, pp. 287–98.Google Scholar
  31. 31.
    Collignon, A., Vandermeulen, D., Suetens, P. and Marchai, G. (1995) 3D multi-modality medical image registration using feature space clustering, in Computer Vision, Virtual Reality and Robotics in Medicine (ed. N. Ayache), Springer, Berlin, pp. 195–204.Google Scholar
  32. 32.
    Collignon, A., Maes, F., Delaere, D., Vandermeulen, D., Suetens, P. and Marchai, G. (1995) Automated multimodality image registration using information theory, in Information Processing in Medical Imaging (eds Y. Bizais, C. Barillot and R. Di Paola), Kluwer, Dordrecht, pp. 287–98.Google Scholar
  33. 33.
    Wells, W.M., Viola, P., Atsumi, H., Nakajima, S. and Kikinis, R. (1996) Multi-modal volume registration by maximization of mutual information. Medical Image Analysis, 1, 35–51.PubMedCrossRefGoogle Scholar
  34. 34.
    Studholme, C., Hill, D.L.G. and Hawkes, D.J. (1996) Automated 3D registration of MR and CT images of the head. Medical Image Analysis, 1, 163–75.PubMedCrossRefGoogle Scholar
  35. 35.
    Studholme, C., Hill, D.L.G. and Hawkes, D.J. (1997) Automated 3D registration of MR and PET brain images by multi-resolution optimisation of voxel similarity measures. Med. Phys., 24, 25–36.PubMedCrossRefGoogle Scholar
  36. 36.
    Studholme, C., Hill, D.L.G. and Hawkes, D.J. (1996) Incorporating connected region labelling into automated image registration using mutual information, in Mathematical Methods in Biomedical Image Analysis (ed. A. Amini), San Francisco, California, pp. 23–31.Google Scholar
  37. 37.
    Studholme, C., Little, J.A., Penny, G.P., Hill, D.L.G. and Hawkes, D.J. (1996) Automated multimodality registration using the full affine transformation: application to MR and CT guided skull base surgery, in Visualisation in Biomedical Computing (eds K.H. Hoehne and R. Kikinis), Springer, Berlin, pp. 601–6.CrossRefGoogle Scholar
  38. 38.
    Maes, F., Collignon, A., Vandermeulen, D., Marchal, G. and Seutens, P. (1996) Multi-modality image registration by maximization of mutual information, in Mathematical Methods in Biomedical Image Analysis (ed. A. Amini), San Francisco, California, pp. 14–22.Google Scholar
  39. 39.
    Chang, H. and Fitzpatrick, J.M. (1992) A technique for accurate magnetic resonance imaging in the presence of field inhomogeneities. IEEE Transactions in Medical Imaging, 11, 319–29.CrossRefGoogle Scholar
  40. 40.
    Little, J.A., Hill, D.L.G. and Hawkes, D.J. (1996) Deformation incorporating rigid structures, in Mathematical Methods in Biomedical Image Analysis (ed. A. Amini), San Francisco, California, pp. 104–13.Google Scholar
  41. 41.
    Tailarach, J. and Tournoux, P. (1988) Co-Planar Stereotactic Atlas of the Human Brain, Georg Thieme Verlag, Stuttgart.Google Scholar
  42. 42.
    Christenson, C.A., Rabbitt, R.D., Miller, M.I. et al. (1995) Topological properties of smooth anatomic maps, in Information Processing in Medical Imaging (eds Y. Bizais, C. Barillot, and R. Di Paola), Kluwer, Dordrecht, pp. 101–12.Google Scholar
  43. 43.
    Bookstein, F.L. (1991) Thin-plate splines and the atlas problem for biomedical images, in Information Processing in Medical Imaging (eds A.C.F. Colchester and D.J. Hawkes), Springer-Verlag, Heidelberg, pp. 326–42.CrossRefGoogle Scholar
  44. 44.
    Thirion, J.P. (1995) Fast intensity-based non-rigid matching, in Medical Robotics and Computer Assisted Surgery (eds A.M. DiGiccia, R.H. Taylor, R. Kikinis and S. Lavallee), Wiley, pp. 47–54.Google Scholar
  45. 45.
    Friston, K.J., Frith, C.D., Liddle, P.F. and Frackowiak, R.S.J. (1997) Comparing functional (PET) images: the assessment of significant change. J. Cereb. Blood Flow Metab., 11, 690–9.CrossRefGoogle Scholar
  46. 46.
    Turkington, T.G., Hoffman, J.M., Jaszczak, R.J. et al. (1995) Accuracy of surface fit registration for PET and MR brain images using full and incomplete brain surfaces. J. Comput. Assist. Tomogr., 19, 117–24.PubMedCrossRefGoogle Scholar
  47. 47.
    Neelin, P., Crossman, J.E., Hawkes, D.J., Ma, Y. and Evans, A.C. (1993) Validation of an MRI/PET landmark registration method using 3-D simulated PET images and point simulations. Computerised Medical Imaging, 17(4–5), 351–6.CrossRefGoogle Scholar
  48. 48.
    Hemler, P.F., Van den Elsen, P.A., Sumanaweera, T., Napel, S., Drace, J. and Adler, J.R. (1995) A quantitative comparison of residual errors for three different multimodality registration techniques, in Information Processing in Medical Imaging (Proceedings of IPMI ‘95) (eds Y. Bizais, C Barillot and R. Di Paola), Kluwer, Dordrecht, pp. 251–62.Google Scholar
  49. 49.
    Wong, J., Studholme, C., Hawkes, D.J. and Maisey, M.N. (1997) Evaluation of the limits of visual detection of image misregistration in a brain FDG PET-MRI study. Eur. J. Nucl. Med., 24, 642–50.PubMedGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 1998

Authors and Affiliations

  • D. J. Hawkes

There are no affiliations available

Personalised recommendations