Psychiatric disorders

  • A. Lingford-Hughes


The nuclear medicine techniques of positron emission tomography (PET) and single-photon emission tomography (SPECT) are powerful tools for the in vivo elucidation of the neurochemistry and aetiology of neuropsychiatric disorders. Both have played a major role in the advancement of psychopharmacology of psychiatric disorders. It is now over 20 years since functional neuroimaging (using 133Xe inhalation) first contributed to the debate about pathophysiological mechanisms in schizophrenia [1]. Since then, there has been a plethora of studies in neuropsychiatry, with the PET and SPECT techniques playing a central role. New techniques such as multiple organs coincidence counter [2], and ligands for specific receptor subtypes, are likely to increase the application of nuclear medicine in the development of new pharmacotherapies.


Cerebral Blood Flow Anterior Cingulate Cortex Schizophrenic Patient Regional Cerebral Blood Flow Anti Psychotic 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Ingvar, D.H. and Franzen, G. (1974) Abnormalities of cerebral blood flow in patients with chronic schizophrenia. Acta Psychiatr. Scand., 50, 425–62.PubMedCrossRefGoogle Scholar
  2. 2.
    Malizia, A., Forse, G., Haida, A. et al. (1995) A new human (psycho)pharrnacology tool: the multiple organs coincidences counter (MOCC). J. Psychopharmacol., 9, 294–306.PubMedCrossRefGoogle Scholar
  3. 3.
    Jones, T. (1996) The role of PET within the spectrum of medical imaging. Eur. J. Nucl. Med., 23, 207–11.PubMedCrossRefGoogle Scholar
  4. 4.
    DeLisi, L.E., Buchsbaum, M.S., Holcomb, H.H. et al. (1985) Clinical correlates of decreased anteroposterior metabolic gradients in positron emission tomography (PET) of schizophrenic patients. Am. J. Psychiatry, 142, 78–81.PubMedGoogle Scholar
  5. 5.
    Wolkin, A., Angrist, B., Wolf, A.P. et al. (1988) Low frontal glucose utilization in chronic schizophrenia: a replication study. Am. J. Psychiatry, 145, 251–3.PubMedGoogle Scholar
  6. 6.
    Andreasen, N.C., Rezai, K., Alliger, R. et al. (1992) Hypofrontality in neuroleptic naive patients and in patients with chronic schizophrenia. Arch. Gen. Psychiatry, 49, 943–58.PubMedCrossRefGoogle Scholar
  7. 7.
    Sheppard, G., Gruzelier, J., Manchanda, R. et al. (1983) 15O Positron emission tomographic scanning in predominantly never-treated acute schizophrenic patients. Lancet, ii, 1448–52.CrossRefGoogle Scholar
  8. 8.
    Szechtman, H., Nahmias, C., Garnett, S. et al. (1988) Effect of neuroleptics on altered cerebral glucose metabolism in schizophrenia. Arch. Gen. Psychiatry, 45, 523–32.PubMedCrossRefGoogle Scholar
  9. 9.
    Cleghorn, J.M., Garnett, E.S., Nahmias, C. et al. (1989). Increased frontal and reduced parietal glucose metabolism in acute untreated schizophrenia. Psychiatry Res., 28, 119–33.PubMedCrossRefGoogle Scholar
  10. 10.
    Ebmeier, K.P., Blackwood, D.H.R., Murray, C. et al. (1993) Single photon emission tomography with 99mTc-exametazine in unmedicated schizophrenia patients. Biol. Psychiatry, 33, 487–95.PubMedCrossRefGoogle Scholar
  11. 11.
    Gur, R.E., Resnick, S.M., Alavi, A. et al. (1987) Regional brain function in schizophrenia. Arch. Gen. Psychiatry, 44, 119–29.PubMedCrossRefGoogle Scholar
  12. 12.
    Volkow, N.D., Brodie, J.D., Wolf, A.P. et al. (1986) Brain metabolism in patients with schizophrenia before and after acute neuroleptic administration. J. Neurol. Neurosurg. Psychiatry, 49, 1199–202.PubMedCrossRefGoogle Scholar
  13. 13.
    Wolkin, A., Sanfilipo, M., Duncan, E. et al. (1996) Blunted change in cerebral glucose utilization after haloperidol treatment in schizophrenic patients with prominent negative symptoms. Am. J. Psychiatry, 153, 346–54.PubMedGoogle Scholar
  14. 14.
    Weinberger, D.R., Berman, K.F. and Zec, R.F. (1986) Physiologic dysfunction of dorsolateral prefrontal cortex in schizophrenia. I. Regional cerebral blood flow evidence. Arch. Gen. Psychiatry, 43, 114–24.PubMedCrossRefGoogle Scholar
  15. 15.
    Berman, K.F., Zec, R.F. and Weinberger, D.R. (1988) Physiologic dysfunction of dorsolateral prefrontal cortex in schizophrenia. Arch. Gen. Psychiatry, 43, 126–35.CrossRefGoogle Scholar
  16. 16.
    Frith, C.D., Friston, K.J., Herold, S. et al. (1995) Regional brain activity in chronic schizophrenic patients during the performance of a verbal fluency task. Br. J. Psychiatry, 167, 343–9.PubMedCrossRefGoogle Scholar
  17. 17.
    Dolan, R.J., Fletcher, P., Frith, C.D. et al. (1995) Dopaminergic modulation of impaired cognitive activation in the anterior cingulate cortex in schizophrenia. Nature, 378, 180–2.PubMedCrossRefGoogle Scholar
  18. 18.
    Buchsbaum, M.S., Haier, R.J., Potkin, S.G. et al. (1992) Fronto-striatal disorder of cerebral metabolism in never medicated schizophrenics. Arch. Gen. Psychiatry, 49, 935–42.PubMedCrossRefGoogle Scholar
  19. 19.
    Buchsbaum, M.S., Potkin, S.G., Siegel, B.V. et al. (1992) Striatal metabolic rate and clinical response to neuroleptics in schizophrenia. Arch. Gen. Psychiatry, 49, 966–74.PubMedCrossRefGoogle Scholar
  20. 20.
    Resnick, S.M., Gur, R.E., Alavi, A. et al. (1988) Positron emission tomography and subcortical glucose metabolism in schizophrenia. Psychiatry Res. Neuroimaging, 24, 1–11.CrossRefGoogle Scholar
  21. 21.
    Early, T.S., Reiman, E.M., Raichle, M.E. and Spitznagel, E.L. (1987) Left globus pallidus abnormality in never-medicated patients with schizophrenia. Proc. Natl. Acad. Sci. USA, 84, 561–3.PubMedCrossRefGoogle Scholar
  22. 22.
    DeLisi, L.E., Buchsbaum, M.S., Holcomb, H.H. et al. (1989) Increased temporal lobe glucose use in chronic schizophrenic patients. Biol. Psychiatry, 25, 835–51.PubMedCrossRefGoogle Scholar
  23. 23.
    Wolkin, A., Jaeger, J., Brodie, J.D. et al. (1985) Persistence of cerebral metabolic abnormalities in chronic schizophrenia as determined by positron emission tomography. Am. J. Psychiatry, 142, 564–71.PubMedGoogle Scholar
  24. 24.
    Friston, K.J., Liddle, P.F., Frith, C.D. et al. (1992) The left medial temporal region and schizophrenia. Brain, 115, 367–82.PubMedCrossRefGoogle Scholar
  25. 25.
    Busatto, G.F., Costa, D.C., Ell, P.J. et al. (1994) Regional cerebral blood flow (rCBF) in schizophrenia during verbal memory activation: a 99mTc-HMPAO single photon emission tomography (SPET) study. Psychol. Med., 24, 463–72.PubMedCrossRefGoogle Scholar
  26. 26.
    Liddle, P.F., Friston, K.J., Frith, C.D. et al. (1992) Patterns of cerebral blood flow in schizophrenia. Br. J. Psychiatry, 160, 179–86.PubMedCrossRefGoogle Scholar
  27. 27.
    Cleghorn, J.M., Franco, S., Szechtman, B. et al. (1992) Toward a brain map of auditory hallucinations. Am. J. Psychiatry, 149, 1062–9.PubMedGoogle Scholar
  28. 28.
    McGuire, P.K., Shah, G.M.S. and Murray, R.M. (1993) Increased blood flow in Broca’s area during auditory hallucinations in schizophrenia. Lancet, 342, 703–6.PubMedCrossRefGoogle Scholar
  29. 29.
    Silbersweig, D.A., Stern, E., Frith, C. et al. (1995) A functional neuroanatomy of hallucinations in schizophrenia. Nature, 378, 176–9.PubMedCrossRefGoogle Scholar
  30. 30.
    Wong, D.F., Wagner, H.N., Tune, L.E. et al. (1986) Positron emission tomography reveals elevated D2 dopamine receptors in drug-naive schizophrenics. Science, 234, 1558–63.PubMedCrossRefGoogle Scholar
  31. 31.
    Tune, L.E., Wong, D.F., Pearlson, G. et al. (1993) Dopamine D2 receptor density estimated in schizophrenia: a positron emission tomography study with 11C-N-methylspiperone. Psychiatry Res., 49, 219–37.PubMedCrossRefGoogle Scholar
  32. 32.
    Farde, L., Eriksson, L., Blomqvist, G. and Halldin, C. (1989) Kinetic analysis of central [HC] raclopride binding to D2 dopamine receptors studied by PET — A comparison to the equilibrium analysis. J. Cereb. Blood Flow Metab., 9, 696–708.PubMedCrossRefGoogle Scholar
  33. 33.
    Martinot, J.L., Peron Magnan, P., Huret, J.D. et al. (1990) Striatal D2 dopaminergic receptors assessed with positron emission tomography and [76Br] bromospiperone in untreated schizophrenic patients. Am. J. Psychiatry, 147, 44–50.PubMedGoogle Scholar
  34. 34.
    Pilowsky, L.S., Costa, D.C., Ell, P.J. et al. (1994) D2 receptor binding in the basal ganglia of antipsychotic free schizophrenic patients — a 123IIBZM single photon emission tomography (SPET) study. Br. J. Psychiatry, 164, 16–26.PubMedCrossRefGoogle Scholar
  35. 35.
    Martinot, J.L., Paillere-Martinot, M.L., Loc’h, C. et al. (1994) Central D2 receptors and negative symptoms of schizophrenia. Br. J. Psychiatry, 164, 27–34.PubMedCrossRefGoogle Scholar
  36. 36.
    Farde, L., Nordstrom, A.-L., Wiesel, F.-A. et al. (1992). Positron emission tomographic analysis of central D1 and D2 dopamine receptor occupancy in patients treated with classical neuroleptics and clozapine. Arch. Gen. Psychiatry, 49, 538–44.PubMedCrossRefGoogle Scholar
  37. 37.
    Nordstrom, A.-L., Farde, L., Wiesel, F.-A. et al. (1993) Central D2 dopamine receptor occupancy in relation to antipsychotic drug effects: a double blind PET study of schizophrenic patients. Biol. Psychiatry, 33, 227–35.PubMedCrossRefGoogle Scholar
  38. 38.
    Coppens, H.J., Sloof, C.J., Paans, A.M.J. et al. (1991). High central D2-dopamine receptor occupancy as assessed with positron emission tomography in medicated but therapeutic resistant schizophrenic patients. Biol. Psychiatry, 29, 629–34.PubMedCrossRefGoogle Scholar
  39. 39.
    Pilowsky, L.S., Costa, D.C., Ell, P.J. et al. (1992) Clozapine, single photon emission tomography and the dopamine D2 receptor blockade hypothesis of schizophrenia. Lancet, 340, 199–202.PubMedCrossRefGoogle Scholar
  40. 40.
    Farde, L. and Nordstrom, A.-L. (1992) PET analysis indicates atypical central dopamine receptor occupancy in clozapine-treated patients. Br. J. Psychiatry, 160(suppl.17), 30–3.Google Scholar
  41. 41.
    Nordstrom, A.L., Farde, L. and Halldin, C. (1993) High 5HT2 receptor occupancy in clozapine treated patients demonstrated by PET. Psychopharmacology, 110, 365–7.PubMedCrossRefGoogle Scholar
  42. 42.
    Nyberg, S., Farde, L., Eriksson, L. et al. (1993) 5-HT2 and D2 dopamine receptor occupancy in the living brain. A PET study with risperidone. Psychopharmacology, 110, 265–72.PubMedCrossRefGoogle Scholar
  43. 43.
    Busatto, G.F., Pilowsky, L.S., Costa, D.C. et al. (1995) Dopamine D2 receptor blockade in vivo with the novel antipsychotics risperidone and remoxipride-an 123I-IBZM single photon emission tomography (SPET) study. Psychopharmacology, 117, 55–61.PubMedCrossRefGoogle Scholar
  44. 44.
    Buchsbaum, M.S., DeLisi, L.E., Holcomb, H. et al. (1984) Anteroposterior gradients in cerebral glucose use in schizophrenia and affective disorders. Arch. Gen. Psychiatry, 41, 1159–66.PubMedCrossRefGoogle Scholar
  45. 45.
    Post, R.M., DeLisi, L.E., Holcomb, H.H. et al. (1987) Glucose utilization in the temporal cortex of effectively ill patients: positron emission tomography. Biol. Psychiatry, 22, 545–53.PubMedCrossRefGoogle Scholar
  46. 46.
    Baxter, L.R., Phelps, M.E., Mazziotta, J.C. et al. (1985) Cerebral metabolic rates for glucose in mood disorders. Arch. Gen. Psychiatry, 42, 441–7.PubMedCrossRefGoogle Scholar
  47. 47.
    Sackheim, H.A., Prohovnik, I., Moeller, J.R. et al. (1990) Regional cerebral blood flow in mood disorders. Arch. Gen. Psychiatry, 47, 60–70.CrossRefGoogle Scholar
  48. 48.
    Baxter, L.R., Schwartz, J.M., Phelps, M.E. et al. (1989) Reduction of prefrontal cortex glucose metabolism common to three types of depression. Arch. Gen. Psychiatry, 46, 243–50.PubMedCrossRefGoogle Scholar
  49. 49.
    Thomas, P., Vaiva, G., Samaille, E. et al. (1993) Cerebral blood flow in major depression and dysthymia. J. Affective Disord., 29, 235–42.CrossRefGoogle Scholar
  50. 50.
    Maes, M., Dierckx, R., Meltzer, H.Y. et al. (1993) Regional cerebral blood flow in unipolar depression measured with Tc-99m-HMPAO single photon emission computed tomography: negative findings. Psychiatry Res.: Neuroimaging, 50, 77–88.PubMedCrossRefGoogle Scholar
  51. 51.
    Kling, A.S., Metter, E.J., Riege, W.H. and Kuhl, D.E. (1986) Comparison of PET measurement of local brain glucose metabolism and CAT measurement of brain atrophy in chronic schizophrenia and depression. Am. J. Psychiatry, 143, 175–80.PubMedGoogle Scholar
  52. 52.
    Austin, M.P., Dougall, N., Ross, M. et al. (1992) Single photon emission tomography with 99mTc-exametazine in major depression and the pattern of brain activity underlying the psychotic/neurotic continuum. J. Affective Dis., 26, 31–44.CrossRefGoogle Scholar
  53. 53.
    Bench, C.J., Fristen, K.J., Brown, R.G. et al. (1993) Regional cerebral blood flow in depression measured by positron emission tomography: the relationship with clinical dimensions. Psychol. Med., 23, 579–90.PubMedCrossRefGoogle Scholar
  54. 54.
    Gur, R.C., Skolnick, B.E., Gur, R.E. et al. (1984) Brain function in psychiatric disorders. Arch. Gen. Psychiatry, 41, 695–9.PubMedCrossRefGoogle Scholar
  55. 55.
    Agren, H. and Reibring, L. (1994) PET studies of presynaptic monoamine metabolism in depressed patients and healthy volunteers. Pharmacopsychiatry, 27, 2–6.PubMedCrossRefGoogle Scholar
  56. 56.
    Suhara, T., Nakayama, K., Inoue, O. et al. (1992) D1 dopamine receptor binding in mood disorders measured by positron emission tomography. Psychopharmacology, 106, 14–18.PubMedCrossRefGoogle Scholar
  57. 57.
    Wong, D.F., Wagner, H.N., Pearlson, G. et al. (1989) Dopamine receptor binding of C-11–3-N-methylspiperone in the caudate in schizophrenia and bipolar disorder: a preliminary report. Psychopharmacol. Bull., 21, 595–8.Google Scholar
  58. 58.
    D’Haenen, H.A. and Bossuyt, A. (1994) Dopamine D2 receptors in depression measured with single photon emission computed tomography. Biol. Psychiatry, 35, 128–32.PubMedCrossRefGoogle Scholar
  59. 59.
    Ebert, D., Fiestel, H., Kaschka, X. et al. (1994) Single photon emission computerized tomography assessment of cerebral dopamine D2 receptor blockade in depression before and after sleep deprivation-preliminary results. Biol. Psychiatry, 35, 880–5.PubMedCrossRefGoogle Scholar
  60. 60.
    D’Haenen, H., Bossuyt, A., Mertens, J. et al. (1992). SPECT imaging of serotonin 2 receptors in depression. Psychiatry Res.: Neuroimaging, 45, 227–37.PubMedCrossRefGoogle Scholar
  61. 61.
    Mathew, R.J. and Wilson, W.H. (1991) Substance abuse and cerebral blood flow. Am. J. Psychiatry, 148, 292–305.PubMedGoogle Scholar
  62. 62.
    London, E.D., Cascella, N.G., Wong, F. et al. (1990) Cocaine induced reduction of glucose utilization in human brain. Arch. Gen. Psychiatry, 47, 587–94.Google Scholar
  63. 63.
    Volkow, N.D., Mullani, N., Gould, K.L. et al. (1988) Cerebral blood flow in chronic cocaine users. Br. J. Psychiatry, 152, 641–8.PubMedCrossRefGoogle Scholar
  64. 64.
    Volkow, N.D., Fowler, J.S., Wolf, A.P. et al. (1991) Changes in brain glucose metabolism in cocaine dependence and withdrawal. Am. J. Psychiatry, 148, 621–6.PubMedGoogle Scholar
  65. 65.
    Volkow, N.D., Hitzemann, R., Wang, G.J. et al. (1992) Long-term frontal brain metabolic changes in cocaine abusers. Synapse, 11, 184–90.PubMedCrossRefGoogle Scholar
  66. 66.
    Levin, J.M., Mendelson, J.H., Holman, B.L. et al. (1995) Improved regional cerebral blood flow in chronic cocaine polydrug users treated with buprenorphine. J. Nucl. Med., 36, 1211–15.PubMedGoogle Scholar
  67. 67.
    Volkow, N.D., Fowler, J.S., Wolf, A.P. et al. (1990) Effects of chronic cocaine abuse on postsynaptic dopamine receptors. Am. J. Psychiatry, 147, 719–24.PubMedGoogle Scholar
  68. 68.
    Baxter, L.R., Schwartz, J.M., Phelps, M. et al. (1988). Localisation of neurochemical effects of cocaine and other stimulants in the human brain. J. Clin. Psychiatry, 49, 23–6.PubMedGoogle Scholar
  69. 69.
    Volkow, N.D., Fowler, J.S., Wang, G.-J. et al. (1993) Decreased dopamine D2 receptor availability is associated with reduced frontal metabolism in cocaine abusers. Synapse, 14, 169–77.PubMedCrossRefGoogle Scholar
  70. 70.
    Volkow, N.D., Hitzemann, R., Wolf, A.P. et al. (1990) Acute effects of ethanol on regional brain glucose metabolism and transport. Psychiatry Res., 35, 39–48.PubMedCrossRefGoogle Scholar
  71. 71.
    Volkow, N.D., Wang, G.J., Begleiter, H. et al. (1995) Regional brain metabolic response to lorazepam in subjects at risk for alcoholism. Alcoholism: Clin. Exp. Res., 19, 510–16.CrossRefGoogle Scholar
  72. 72.
    Sachs, H., Russell, J.A.G., Christman, D.R. and Cook, B. (1987) Alteration of regional cerebral glucose metabolic rate in non-Korsakoff chronic alcoholism. Arch. Neurol., 44, 1242–51.PubMedCrossRefGoogle Scholar
  73. 73.
    Berglund, M., Hagstadius, S., Risberg, J. et al. (1987) Normalization of regional cerebral blood flow in alcoholics during the first 7 weeks of abstinence. Acta Psychiatr Scand., 75, 202–8.PubMedCrossRefGoogle Scholar
  74. 74.
    Volkow, N.D., Hitzemann, R., Wang, G.J. et al. (1992) Decreased brain metabolism in neurologically intact healthy alcoholics. Am. J. Psychiatry, 149, 1016–22.PubMedGoogle Scholar
  75. 75.
    Volkow, N.D., Wang, G.J., Hitzemann, R. et al. (1994) Recovery of brain glucose metabolism in detoxified alcoholics. Am. J. Psychiatry, 151, 178–83.PubMedGoogle Scholar
  76. 76.
    Adams, K.M., Gilman, S., Koeppe, R.A. et al. (1993) Neuropsychological deficits are correlated with frontal hypometabolism in positron emission tomography studies of older alcoholic patients. Alcohol: Clin. Exp. Res., 17, 205–10.CrossRefGoogle Scholar
  77. 77.
    Hietala, J., West, C., Syvalahti, E. et al. (1994) Striatal D2 dopamine receptor binding characteristics in vivo in patients with alcohol dependence. Psychopharmacology, 116, 285–90.PubMedCrossRefGoogle Scholar
  78. 78.
    Tiihonen, J., Kuikka, J., Bergstrom, K. et al. (1995) Altered striatal dopamine reuptake site densities in habitually violent and non-violent alcoholics. Nature Med., 1(7), 654–7.PubMedCrossRefGoogle Scholar
  79. 79.
    Pauli, S., Liljequist, S., Farde, L. et al. (1992) PET analysis of alcohol interaction with the brain disposition of [HC] flumazenil. Psychopharmacology, 107, 180–5.PubMedCrossRefGoogle Scholar
  80. 80.
    Litton, J.-E., Neiman, J., Pauli, S. et al. (1993) PET analysis of [HC] flumazenil binding to benzodiazepine receptors in chronic alcohol dependent men and healthy controls. Psychiatry Res.: Neuroimaging, 50, 1–13.PubMedCrossRefGoogle Scholar
  81. 81.
    Mathew, R.J. and Wilson, W.H. (1990) Anxiety and cerebral blood flow. Am. J. Psychiatry, 147, 838–49.PubMedGoogle Scholar
  82. 82.
    Gur, R.C., Gur, R.E., Resnick, S. et al. (1987) The effect of anxiety on cortical cerebral blood flow and metabolism. J. Cereb. Blood Flow Metab., 7, 173–7.PubMedCrossRefGoogle Scholar
  83. 83.
    Lucey, J.V., Costa, D.C., Blanes, T. et al. (1995) Regional cerebral blood flow in obsessive-compulsive disordered patients at rest. Br. J. Psychiatry, 167, 629–34.PubMedCrossRefGoogle Scholar
  84. 84.
    Insel, T.R. (1992) Toward a neuroanatomy of obsessive-compulsive disorder. Arch. Gen. Psychiatry, 49, 739–44.PubMedCrossRefGoogle Scholar
  85. 85.
    Baxter, L.R., Schwartz, J.M., Bergman, K.S. et al. (1992) Caudate glucose metabolic rate changes with both drug and behaviour therapy for obsessive-compulsive disorder. Arch. Gen. Psychiatry, 49, 681–9.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 1998

Authors and Affiliations

  • A. Lingford-Hughes

There are no affiliations available

Personalised recommendations