Skip to main content

Repair of X-ray damage II: Repair of mutagenic lesions. Molecular action of X-rays. Sensitivity differences

  • Chapter
Book cover Mutation research

Abstract

Already in 1953, Thoday and Swanson had independently suggested that X-ray-induced chromosome breaks may remain latent for some time because during condensed stages of the chromosomes the separation of broken ends and, through this, the formation of rearrangements would be mechanically inhibited (1, 2). A number of observations could be explained by this assumption, e. g. the fact that breaks produced in plant chromosomes at metaphase I of meiosis form rearrangements only during the second meiotic division.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Thoday, J.M. (1952), ‘Sister-union isolocus breaks in irradiated Vicia faba. The target theory and physiological variation’, Heredity 6 suppl., 299–309.

    Google Scholar 

  2. Swanson, C.P. (1955), ‘Effect of oxygen tension on the production of chromosome breakage by ionizing radiations: an interpretation’, pp. 254–261 in Radiobiology Symposium 1954, ed. Z.M. Bacq and P. Alexander, Butterworths Scientific Publications, London.

    Google Scholar 

  3. Kimball, R.F. (1963), ‘The relation of repair to differential radiosensitivity in the production of mutations in Paramecium’, pp. 167–176 inRepairfrom Genetic Radiation Damage and Differential Radiosensitivity in Germ Cells, ed. F.H. Sobels, Pergamon Press, Oxford, New York, London Paris.

    Google Scholar 

  4. Kimball, R.F. (1961), ‘Postirradiation processes in the induction of recessive lethals by ionizing radiation’, J. Cell Comp. Physiol., 58, Suppl. 1, 163–170.

    Article  PubMed  CAS  Google Scholar 

  5. Kimball, R.F. (1968), ‘The relation between repair of radiation damage and mutation induction’, Photochemistry and Photobiology 8, 515–520.

    Article  PubMed  CAS  Google Scholar 

  6. Glass, B. (1955), ‘Differences in mutability during different stages of gametogenesis in Drosophila’, Brookhaven Symposia in Biology 8, 148–170.

    Google Scholar 

  7. Sankaranarayanan, K. and Sobels, F.H. (in press), ‘Radiation Genetics’, in The Genetics and Biology of Drosophila, ed. M. Ashburner and E. Novitski, Academic Press, New York.

    Google Scholar 

  8. Sobels, F.H. (1966), ‘Processes underlying repair and radiosensitivity in spermatozoa and spermatids of Drosophila’, in Genetical Aspects of Radiosensitivity: Mechanisms of Repair. Int. Atomic Energy Agency, Vienna, 49–65.

    Google Scholar 

  9. Mukherjee, R.N. and Sobels, F.H. (1968), ‘The effects of sodium fluoride and iodoacetamide on mutation induction by X-irradiation in mature spermatozoa of Drosophila’, Mutation Res. 6, 217–225.

    Article  PubMed  CAS  Google Scholar 

  10. Traut, H. (1967), ‘X-ray induction of 2;3 translocations in mature and immature oocytes of Drosophila melanogaster’, Genetics 56, 265–272.

    PubMed  CAS  Google Scholar 

  11. King, R.C., Darrow, J.B. and Kaye, N.W. (1956), ‘Studies on different classes of mutations induced by radiation of Drosophila melanogaster females’, Genetics 41, 890–900.

    PubMed  CAS  Google Scholar 

  12. Graf, U., Piatkowska, B. and Würgler, F.E. (1969), ‘X-ray-induced recessive lethals in newly inseminated eggs of Drosophila melanogaster’, Mutation Res. 7, 385–392.

    Article  PubMed  CAS  Google Scholar 

  13. Würgler, F.E. (1971), ‘Radiation-induced translocations in inseminated eggs of Drosophila melanogaster’, Mutation Res. 13, 353–359.

    Article  PubMed  Google Scholar 

  14. Russell, W.L., Russell, L.B. and Kelly, E.M. (1958), ‘Radiation dose rate and mutation frequency’, Science 128, 1546–1550.

    Article  PubMed  CAS  Google Scholar 

  15. Russell, W.L. (1969), Observed mutation frequency in mice and the chain of processes affecting it’, 216–228 in Mutation as Cellular Process, (biblio).

    Google Scholar 

  16. Russell, L.B. (1971), ‘Definition of functional units in a small chromosomal segment of the mouse and its use in interpreting the nature of radiation-induced mutations’, Mutation Res. 11, 107–123.

    Article  PubMed  CAS  Google Scholar 

  17. Sand, S.A. and Smith, H.H. (1973), ‘Somatic mutational transients. HI Response by two genes in a clone of Nicotiana to 24 roentgens of γ radiation applied at various intensities’, Genetics, 75: 93–111.

    PubMed  CAS  Google Scholar 

  18. Dewey, W.C. (1972), ‘Confirmation of lesions having the potential for forming chromosomal aberrations’, Int. J. Rad. Biol., 22, 95–97.

    Article  CAS  Google Scholar 

  19. Lyon, M.F., Papworth, D.G. and Phillips, R.J.S. (1972), ‘Doserate and mutation frequency after irradiation of mouse spermatogonia’, Nature New Biology 238, 101–104.

    Article  PubMed  CAS  Google Scholar 

  20. Witkin, E.M. (1974), ‘Thermal enhancement of ultraviolet mutability in a tif-1 uvrA derivative of Escherichia coli B/r: evidence that ultraviolet mutagenesis depends upon an in-ducible function’, Proc. Nat. Acad. Sct., U.S.A. 71, 1930–1934.

    Article  CAS  Google Scholar 

  21. Russell, W.L. and Kelly, E.M. (1965), ‘Mutation frequency in female mice exposed to a small X-ray dose at high dose rate’, Genetics, 52, 471.

    Google Scholar 

  22. Meyer, H.U. and Abrahamson, S. (1971), ‘Preliminary report on mutagenic effects of low X-ray doses in immature germ cells of adult Drosophila females’, Genetics, 68, 244.

    Google Scholar 

  23. Russell, W.L. (1963), ‘The effect of radiation dose rate and fractionation on mutation in mice’, pp. 205–217 in Repair From Genetic Radiation Damage and Differential Radiosensitivity in Germ Cells, ed. F.H. Sobels. Pergamon Press, Oxford, London, New York, Paris.

    Google Scholar 

  24. Tazima, Y. (1969), ‘Analysis of radiation sensitivity of silkworm spermatogonia and its implications in the study of mutation’, Proc. of Int. Seminar on Comparative cellular and species radiosensitivity in animals. Kyoto, pp. 164–172.

    Google Scholar 

  25. Léonard, A. and Deknudt, W. (1968), ‘Chromosome rearrangements after low X-ray doses given to spermatogonia of mice’, Can. J. Genet. Cytol., 10, 119–124.

    PubMed  Google Scholar 

  26. Gerber, G.B. and Léonard, A. (1971), ‘Influence of selection, non-uniform cell population and repair on dose-effect curves of genetic effects’, Mutation Res., 12, 175–182.

    Article  PubMed  CAS  Google Scholar 

  27. Demerec, M. (1958), ‘Dose-effect relationships for X-ray induction of mutations in three genes of Escherichia coli’, Science, 127, 1059.

    Google Scholar 

  28. Bridges, B.A., Law, J. and Munson, R.J. (1968), ‘Mutagenesis in Escherichia coli. II. Evidence for a common pathway for mutagenesis by ultraviolet light, ionizing radiation and thymine deprivation’, Molec. Gen. Genetics, 103, 266–273.

    Article  CAS  Google Scholar 

  29. Munson, R.J. and Bridges, B.A. (1973), ‘The LET factor in mutagenesis by ionizing radiations. I. Reversion to wild type of a bacteriophage T4 Amber Mutant’, Int. J. Rad. Biol., 24, 257–273.

    Article  CAS  Google Scholar 

  30. Ishii, Y. and Kondo, S. (1972), ‘Spontaneous and radiationinduced deletion mutations in Escherichia coli strains with different DNA repair capacities’, Mutation Res., 16, 13–25.

    Article  PubMed  CAS  Google Scholar 

  31. de Serres, F.J., Mailing, H.V. and Webber, B.B. (1967), ‘Doserate effects on inactivation and mutation induction in Neurospora crassa’, Brookhaven Symposia in Biology, 20, 56–76.

    Google Scholar 

  32. Hrishi, N. and James, A.P. (1964), ‘The induction of mutation in yeast by thermal neutrons’, Can. J. Genet. Cytol., 6, 357–363.

    Google Scholar 

  33. Deering, R.A. (1963), ‘Mutation and killing of Escherichia coli WP-2 by accelerated heavy ions and other radiation’, Radiation Res., 19, 169–178.

    Article  PubMed  CAS  Google Scholar 

  34. Auerbach, C. and Ramsay, D. (1968), ‘Analysis of a case of mutagen specificity in Neurospora crassa. I. Dose-response curves’, Molec. Gen. Genetics, 103, 72–104.

    Article  CAS  Google Scholar 

  35. Bridges, B.A. (1963), ‘Effect of chemical modifiers on inactivation and mutation-induction by γ radiation in Escherichia coli.’, J. Gen. Microbiol., 31, 405–412.

    Article  PubMed  CAS  Google Scholar 

  36. Dale, W.M. (1966), ‘Irradiation effects on Enzymes’, in Encyclopedia of Medical Radiology, Vol. II, Part 1: 1–38. Berlin-Heidelberg-New York, Springer.

    Google Scholar 

  37. Pollard, E.C., Ebert, M.J., Miller, C., Kolacz, K. and Barone, T.F. (1965), ‘Ionizing radiation: effect of irradiated medium on synthetic processes’, Science, 147, 1045–1047.

    Article  PubMed  CAS  Google Scholar 

  38. Yamamoto, O. (1967), ‘Biochemical studies of radiation damage. I. Inactivation of the pH5 fraction in amino acy1 sRNA. synthesis in vitro and the binding of amino acids with protein and nucleic acid by 7-ray irradiation’, Int. J. Rad. Biol., 12, 467–476.

    Article  CAS  Google Scholar 

  39. Kirrman, J.M. (1966), ‘Sur la radiosensibilité de la déhydroginase lactique d’un organe embryonnaire de poulet cultivé in vitro’, Compt. Rend. Acad. Sci., 263, 426–429.

    Google Scholar 

  40. Harrington, H. (1964), ‘Effect of X irradiation on the priming activity of DNA’, Proc. Nat. Acad. Sci., U.S.A., 51, 59–66.

    Article  CAS  Google Scholar 

  41. Goddard, J.P., Weiss, J.J. and Wheeler, C.M. (1969), ‘Error frequency during in vitro transcription of poly-U is increased with γ-irradiated RNA Polymerase’, Nature, 222, 670–671.

    Article  PubMed  CAS  Google Scholar 

  42. Kučan, Z. (1966), ‘Inactivation of isolated Escherichia coli ribosomes by 7 irradiation’, Radiation Res., 27, 229–236.

    Article  Google Scholar 

  43. Skinner, L.G. (1968), ‘Effect of X-radiation on transfer ribonucleic acid’, Int. J. Rad. Biol., 14, 245–256.

    Article  CAS  Google Scholar 

  44. Alexander, P. (1966), ‘Changes in macromolecules produced by ionizing radiations’, in Encyclopedia of Medical Radiology. Springer-Verlag, Berlin, Vol. 1, Part 1, 183–213.

    Google Scholar 

  45. Wacker, A. (1963), ‘Molecular mechanisms of radiation effects’, in Progress in Nucleic Acid Research, eds. J.N. Davidson and W.E. Cohn, Academic Press, New York, Vol. 1, 369–399.

    Google Scholar 

  46. Ullrich, M. and Hagen, V. (1971), ‘Base liberation and concomitant reactions in irradiated DNA solutions’, Int. J. Rad. Biol., 19, 507–518.

    Article  CAS  Google Scholar 

  47. Freifelder, D. (1966), ‘Lethal changes in bacteriophage DNA produced by X-rays’, Radiation Res., Suppl. 6, 80–96.

    Article  Google Scholar 

  48. Freifelder, D. (1968), Rate of production of single-strand breaks in DNA by X-irradiation in situ, J. Mol. Biol., 35, 303–309.

    Article  PubMed  CAS  Google Scholar 

  49. Schans, van der, G.P., Bleichrodt, J.F. and Blok, J. (1973), ‘Contribution of various types of damage to inactivation of a biologically-active double-stranded circular DNA by γ-radiation’, Int. J. Rad. Biol., 23, 133–150.

    Article  Google Scholar 

  50. Fox, B.W. and Fox, M. (1973), ‘DNA single-strand rejoining in two pairs of cell-lines showing the same and different sensitivities to X-rays’, Int. J. Rad. Biol., 24, 127–135.

    Article  CAS  Google Scholar 

  51. Bresler, S.E., Kalinin, V.L., Kopylova, Yu. I., Krivisky, A.S., Rybnin, V.N. and Shelegedin, V.N. (in press),’ study of genetic effects of high energy radiation with different ionizing capacities on extracellular phages’, Mutation Res.

    Google Scholar 

  52. Bridges, B.A. and Mottershead, R.P. (1972), γ ray mutagenesis in a strain of Escherichia coli deficient in DNA polymerase I’, Heredity, 29, 203–211.

    Article  PubMed  CAS  Google Scholar 

  53. Phillips, S.L., Person, S. and Newton, H.P. (1972), ‘Characterization of genetic coding changes in bacteria produced by ionizing radiation and by the radioactive decay of incorporated 3H-labelled compounds’, Int. J. Rad. Biol., 21, 159–166.

    Article  CAS  Google Scholar 

  54. Prakash, L. and Sherman, F. (1973), ‘Mutagenic specificity: reversion of iso-1-cytochrome c mutants of yeast’, J. Mol. Biol., 79, 65–82.

    Article  PubMed  CAS  Google Scholar 

  55. Mailing, H.V. and de Serres, F.J. (1973), ‘Genetic alterations at the molecular level in X-ray induced ad-3B mutants of Neurospora crassa’, Radiation Res. 53, 77–87.

    Article  Google Scholar 

  56. Lyon, M.F. and Morris, T. (1966), ‘Mutation rates at a new set of specific loci in the mouse’, Genet. Res. Camb., 7, 12–17.

    Article  CAS  Google Scholar 

  57. Alexander, M.L. (1954), ‘Mutation rates at specific autosomal loci in the mature and immature germ cells of Drosophila melanogaster’, Genetics, 39, 409–428.

    PubMed  CAS  Google Scholar 

  58. Abrahamson, S., Bender, M.A., Conger, A.D. and Wolff, S. (1973), ‘Uniformity of radiation-induced mutation rates among different species’, Nature, 245, 460–462.

    Article  PubMed  CAS  Google Scholar 

  59. Britten, R.J. and Davidson, E.H. (1969), ‘Gene regulation for higher cells: a theory’, Science, 165, 349–357.

    Article  PubMed  CAS  Google Scholar 

  60. Judd, B.H., Shen, M.W. and Kaufman, T.C. (1972), ‘The anatomy and function of a segment of the X chromosome of Drosophila melanogaster’, Genetics, 71, 139–156.

    PubMed  CAS  Google Scholar 

  61. Shannon, M.P., Kaufman, T.C., Shen, M.W. and Judd, B.H. (1972), ‘Lethality patterns and morphology of selected lethal and semi-lethal mutations in the zeste-white region of Drosophila melanogaster’, Genetics, 72, 615–638.

    PubMed  CAS  Google Scholar 

  62. Sobels, F.H. (1968), ‘Genetic repair phenomena and dose-rate effects in animals’, Adv. Biol. Med. Phys., 12, 341–352.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 1976 Charlotte Auerbach

About this chapter

Cite this chapter

Auerbach, C. (1976). Repair of X-ray damage II: Repair of mutagenic lesions. Molecular action of X-rays. Sensitivity differences. In: Mutation research. Springer, Boston, MA. https://doi.org/10.1007/978-1-4899-3103-0_9

Download citation

  • DOI: https://doi.org/10.1007/978-1-4899-3103-0_9

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-0-412-11280-5

  • Online ISBN: 978-1-4899-3103-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics