Mutagen specificity

  • Charlotte Auerbach


In the narrow sense, this term has been applied to the types of molecular change that different mutagens produce in DNA (1). In its widest sense, the term covers all cases in which mutagens vary from each other or from spontaneous mutability in the proportions of the effects they produce, e. g. in the ratios between dominant lethals and translocations, between chromosome breaks in different chromosomes or chromosomal regions, between deletions and gene mutations, between true revertants and suppressors, between forward mutations at different loci or to different alleles at the same locus, or between reverse mutations of genes in the same cell. Mutagen specificity in the narrow sense has been dealt with in previous chapters in relation to the most important mutagens. It is, however, well to bear in mind that there are only very few systems in which specificity at this level can be analysed reliably, and that extrapolation to other systems are fraught with difficulties; we have seen examples of this. In this chapter I am going to deal with specificity in the widest sense. We shall see that only a minority of observed specificities can be attributed unambiguously to reactions between mutagens and DNA, and that often this explanation can be excluded. I shall restrict myself to examples of specificity for gene mutations; more examples will be found in the review by Auerbach and Kilbey (Bibliography).


Neurospora Crassa Nitrogen Mustard Suppressor Mutation Mutagenic Pathway Mutation Research 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    De Serres, F.J., Brockmann, H.E., Barnett, W.E. and Kølmark, H.G. (1971), ‘Mutagen specificity in Neurospora crassa’, Mutation Res. 12, 129–142.PubMedCrossRefGoogle Scholar
  2. 2.
    Demerec, M. (1953), ‘Reaction of genes of Escherichia coli to certain mutagens’, Symp. Soc. Exp. Biol. 7, 43–54.Google Scholar
  3. 3.
    Kølmark, H.G. (1953), ‘Differential response to mutagens as studied by the Neurospora reverse mutation test’, Hereditas 39, 270–276.CrossRefGoogle Scholar
  4. 4.
    Glover, S.W. (1956), ‘A comparative study of induced reversions in Escherichia coli’, ‘Genetic studies with bacteria’, Carnegie Inst. Wash. Pub. 612, 121–136.Google Scholar
  5. 5.
    Witkin, E.M. and Theil, E.C. (1960), ‘The effect of post-treatment with chloramphenicol on various ultraviolet-induced mutations in Escherichia coli’, Proc. Nat. Acad. Sci. U.S.A. 46, 226–231.CrossRefGoogle Scholar
  6. 6.
    Benzer, S. (1961), ‘Genetic fine structure’, Harvey Lectures 56, 1–21.Google Scholar
  7. 7.
    Fries, N. and Kihlman, B. (1948), ‘Fungal mutations obtained with methylxanthines’, Nature 162, 573.PubMedCrossRefGoogle Scholar
  8. 8.
    Novick, A. (1955), ‘Mutagens and antimutagens’, Brookhaven Symp. Biol. 8, 201–215.Google Scholar
  9. 9.
    Chevallier, M.R. (1964), ‘Contribution a l’étude de l’action mutagène du peroxyde succinique chez Escherichia coli’, Thèse pour le titre de Docteur Es-Sciences, University of Strasbourg.Google Scholar
  10. 10.
    Sega, G.A., Cumming, R.B. and Walton, M.F. (1974), ‘Dosimetry studies on the ethylation of mouse sperm DNA after in vivo exposure to (3H) ethylmethane-sulfonate’, Mutation Res. 24, 317–333.PubMedCrossRefGoogle Scholar
  11. 11.
    Kihlman, B. (1952), ‘A survey of purine derivatives as inducers of chromosome changes’, Hereditas 38, 115–127.CrossRefGoogle Scholar
  12. 12.
    Webb, S.J. and Tai, C.C. (1970), ‘Differential lethal and mutagenic action of 254nm and 320–400nm radiation on semi-dried bacteria’, Photochem. Photobiol. 12, 119–143.PubMedCrossRefGoogle Scholar
  13. 13.
    Brock, R.D. (1971), ‘Differential mutation of the β-galactosidase gene of Escherichia coli’, Mutation Res. 11, 181–186.PubMedGoogle Scholar
  14. 14.
    Webb, S.J. (1967), ‘The influence of growth media on proteins bound to DNA and their possible role in the response of Escherichia coli B to ultraviolet light’, Canad. J. Microbiol. 13, 57–68.CrossRefGoogle Scholar
  15. 15.
    Alderson, T. and Scott, B.R. (1971), ‘Induction of mutation by γ-irradiation in the presence of oxygen or nitrogen’, Nature New Biology 230, 45–48.PubMedCrossRefGoogle Scholar
  16. 16.
    Bleichrodt, J.F. and Verhey, W.S.D. (1974), ‘Influence of oxygen on the induction of mutations in bacteriophage øX174 by ionizing radiation’, Int. J. Rad. Biol. 25, 505–512.CrossRefGoogle Scholar
  17. 17.
    Okada, Y., Streisinger, G., Owen, J., Newton, J., Tsugita, A. and Inouye, M. (1972), ‘Molecular basis of a mutational hot spot in the lysozyme gene of bacteriophage T4’, Nature New Biology 236, 338–341.CrossRefGoogle Scholar
  18. 18.
    Streisinger, G., Okada, Y., Emrich, J., Newton, J., Tsugita, A., Terzaghi, E. and Inouye, M. (1966), ‘Frameshift mutations and the genetic code’, Cold Spring Harbor Symp. Quant. Biol. 31, 77–84.PubMedCrossRefGoogle Scholar
  19. 19.
    Drake, J.W. and Greening, E.O. (1970), ‘Suppression of chemical mutagenesis in bacteriophage T4 by genetically modified polymerases’, Proc. Nat. Acad. Sci. U.S.A. 66, 823–829.CrossRefGoogle Scholar
  20. 20.
    Lawrence, C.W., Stewart, J.W., Sherman, F. and Christensen, R. (1974), ‘Specificity and frequency of ultraviolet-induced reversion of an iso-1-cytochrome c ochre mutant in radiation-sensitive strains of yeast’, J. Mol. Biol. 85, 137–162.PubMedCrossRefGoogle Scholar
  21. 21.
    Chang, T.L., Lennox, J.E. and Tuveson, R.W. (1968), ‘Induced mutation in UV-sensitive mutants of Aspergillus nidulans and Neurospora crassa’, Mutation Res. 5, 217–224.PubMedCrossRefGoogle Scholar
  22. 22.
    Harm, H. and Rupert, C.S. (1968), ‘Analysis of photoenzymatic repair of UV lesions in DNA by single light flashes. I. In vitro studies with Haemophilus influenzae transforming DNA and yeast photoreactivating enzyme’, Mutation Res. 6, 355–370.PubMedCrossRefGoogle Scholar
  23. 23.
    Corran, J. (1969), ‘Analysis of an apparent case of ‘gene-controlled mutational stability’: the auxotrophic preemption of a specific growth requirement’, Mutation Res. 7, 287–295.PubMedCrossRefGoogle Scholar
  24. 24.
    Clarke, C.H. (1962), ‘A case of mutagen specificity attributable to a plating medium effect’, Zeitschr. Indukt. Abst. Vererb. Lehre 93, 435–440.Google Scholar
  25. 25.
    Clarke, C.H. (1965), ‘Methionine as an antimutagen in Schizosaccharomyces pombe’, J. Gen. Microbiol. 39, 21–31.PubMedCrossRefGoogle Scholar
  26. 26.
    Clarke, C.H. (1963), ‘Suppression by methionine of reversions to adenine independence in Schizosaccharomyces pombe’, J. Gen. Microbiol 31, 353–363.PubMedCrossRefGoogle Scholar
  27. 27.
    Zetterberg, G. (1962), ‘On the specific mutagenic effect of N-nitro-N-nitroso-methylurethan in Ophiostoma’, Hereditas 48, 371–389.CrossRefGoogle Scholar
  28. 28.
    Arditti, R.R. and Sermonti, G. (1962), ‘Modification by manganous chloride of the frequency of mutations induced by nitrogen mustard’, Genetics 47, 761–768.PubMedGoogle Scholar
  29. 29.
    Queiroz, C. (1973), ‘The effect of the plating medium on the recovery of nonsense suppressors in Saccharomyces cerevisiae’, Biochem. Genet. 8, 85–100.PubMedCrossRefGoogle Scholar
  30. 30.
    Chopra, V.L. (1967), ‘Gene-controlled change in mutational stability of a tryptophanless mutant of Escherichia coli WP2’, Mutation Res. 4, 382–384.PubMedCrossRefGoogle Scholar
  31. 31.
    Šilhankova, L. (1969), ‘Suppression of rough phenotype in Saccharomyces cerevisiae’, Antonie van Leeuwenhoek 35 (Suppl.), C11–12.PubMedGoogle Scholar
  32. 32.
    Paterson, H.F. (1974), ‘Investigations into a reversal of di-epoxybutane specificity in Neurospora crassa’, Mutation Res. 25, 411–413.PubMedCrossRefGoogle Scholar
  33. 33.
    Skavronskaya, A.G., Aleshkin, G.J. and Likchoded, L.V. (1973), ‘The dependence of UV-induced reversions to prototrophy on the streptomycin resistance allele in Escherichia coli’, Mutation Res. 19, 49–56.PubMedCrossRefGoogle Scholar
  34. 34.
    Clarke, C.H. (1973), ‘Influence of streptomycin on UV-induced tryp + reversions in a streptomycin-resistant strain of Escherichia coli B/R’, Mutation Res. 19, 43–47.PubMedCrossRefGoogle Scholar
  35. 35.
    Loppes, R. (1969), ‘A new class of arginine-requiring mutants in Chlamydomonas reinhardi’, Molec. Gen. Genetics 104, 172–177.CrossRefGoogle Scholar
  36. 36.
    Böhme, H. (1961), ‘Über Rückmutationen und Suppressor-mutationen bei Proteus mirabilis’, Zeitschr. Vererb. Lehre 92, 197–205.Google Scholar
  37. 37.
    Charkabarti, S.L. and Maitra, P.K. (1974), ‘Development of auxotrophy by streptomycin-resistant mutations’, J. Bacter. 118, 1179–1180.Google Scholar
  38. 38.
    Kaplan, R.W. (1961), ‘Spontane Mutation von einer Mono-auxotrophie zu einer Anderen in einem Schritt (Auxotro-phiesprungmutation)’, Zeitschr. Vererb. Lehre 92, 21–27.Google Scholar
  39. 39.
    Jain, H.K. and Shukla, P.T. (1972), ‘Locus specificity of mutagens in Drosophila’, Mutation Res. 14, 440–442.PubMedGoogle Scholar
  40. 40.
    Shukla, P.T. (1972), ‘Analysis of mutagen specificity in Drosophila melanogaster’, Mutation Res. 16, 363–371.PubMedCrossRefGoogle Scholar
  41. 41.
    Lifschytz, E. and Falk, R. (1969), ‘Fine structure analysis of a chromosome segment in Drosophila melanogaster. Analysis of ethylmethanesulphonate-induced lethals’, Mutation Res. 8, 147–155.PubMedCrossRefGoogle Scholar
  42. 42.
    Kilbey, B.J. (1974), ‘The analysis of a dose-rate effect found with a mutagenic chemical’, Mutation Res. 26, 249–256.PubMedCrossRefGoogle Scholar
  43. 43.
    Allison, M.J. (1972), ‘The effect of phosphate buffer on the differential response of two genes in Neurospora crassa to UV’, Mutation Res. 16, 225–234.CrossRefGoogle Scholar
  44. 44.
    Kilbey, B.J. and Purdom, S.M. (1974), ‘The modifying effect of age and strain on the mutagenic specificity of ultraviolet light in Neurospora crassa’, Molec. Gen. Genetics 135, 295–308.CrossRefGoogle Scholar
  45. 45.
    Epstein, J., Williams, J.R. and Little, J.B. (1973), ‘Deficient DNA. repair in human progeroid cells’, Proc. Nat. Acad. Sci. U.S.A. 70, 977–981.CrossRefGoogle Scholar
  46. 46.
    Mailing, H., Miltenburger, H., Westergaard, M. and Zimmer, K.G. (1959), ‘Differential response of a double mutant — adenineless, inositolless — in Neurospora crassa to combined treatment by ultraviolet radiation and chemicals’, Int. J. Rad. Biol. 1, 328–343.CrossRefGoogle Scholar

Copyright information

© Charlotte Auerbach 1976

Authors and Affiliations

  • Charlotte Auerbach
    • 1
  1. 1.Institute of Animal GeneticsUniversity of EdinburghUK

Personalised recommendations