Mutagenesis by ultraviolet and visible light II. Methods of mutation research on micro-organisms and mammalian cell cultures

  • Charlotte Auerbach


The most important experiments on the mutagenic effects of ultraviolet and visible light have been carried out on micro-organisms. For a critical appreciation of the results, it is necessary to understand the rationale, scope and limitations of the test methods, and the kind of conclusions that can or cannot be drawn validly from the data. I have dealt with this aspect of the methodology more fully in a previous book, in which additional references to the literature up to 1961 can also be found (‘Mutation’; Bibliography). Detailed descriptions of techniques are found in ‘Chemical Mutagens’ Bibliography).


Visible Light Mutation Frequency Nonsense Mutation Neurospora Crassa Mammalian Cell Culture 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Hollaender, A. and Emmons, C.W. (1941), ‘Wavelength dependence of mutation production in the ultraviolet with special emphasis on fungi’, Cold Spring Harbor Symp. Quant. Biol., 9, 179–186.CrossRefGoogle Scholar
  2. 2.
    Beadle, G.W. and Tatum, E.L. (1945), ‘Neurospora. II. Methods of producing and detecting mutations concerned with nutritional requirements’, Am. J. Bot. 32, 678.CrossRefGoogle Scholar
  3. 3.
    Demerec, M. (1951), ‘Studies of the streptomycin-resistance system of mutations in E. coli’, Genetics, 36, 585–597.PubMedGoogle Scholar
  4. 4.
    Auerbach, C. (1970), ’Remark on the ‘Tables for determining the statistical significance of mutation frequencies’, Mutation Res., 10, 256.PubMedCrossRefGoogle Scholar
  5. 5.
    Bürk, R.R., Pitts, J.D. and Subak-Sharpe, J.H. (1968), ‘Exchange between hamster cells in culture’, Exp. Cell Res., 53, 297–301.PubMedCrossRefGoogle Scholar
  6. 6.
    Auerbach, C. and Ramsay, D. (1971), ‘The problem of viability estimates in tests for reverse mutations’, Mutation Res., 11, 353–360.PubMedGoogle Scholar
  7. 7.
    Witkin, E.M. (1967), ‘Mutation-proof and mutation-prone modes of survival in derivatives of Escherichia coli B differing in sensitivity to ultraviolet light’, Brookhaven Symposia in Biology, 20, 17–55.Google Scholar
  8. 8.
    Atwood, K.C., Mukai, F. and Pittenger, T.H. (1958), ‘“Punch tube” and “squirting” methods for Neurospora’, Microbial Genetics Bull, 16, 34–35.Google Scholar
  9. 9a.
    De Serres, F.J. (1968), Genetic analysis of the extent and type of functional inactivation in irreparable recessive lethal mutations in the ad-3 region of Neurospora crassa, Genetics, 58, 69–77.PubMedGoogle Scholar
  10. 9b.
    Hong, J.S. and Ames, B.N. (1971), ‘Localized mutagenesis of any specific small region of the bacterial chromosome’, Proc. Nat. Acad. Sci. U.S.A. 68, 3158–3162.CrossRefGoogle Scholar
  11. 10a.
    Kinsey, J.A. and Stadler, D.R. (1969), ‘Interaction between analogue resistance and amino acid auxotrophy in Neurospora’, J. Bacter., 97, 1114–1117.Google Scholar
  12. 10b.
    Alderson, T. and Scazzocchio, C. (1967), ‘A system for the study of interlocus specificity for both forward and reverse mutation in at least eight gene loci in Aspergillus nidulans’, Mutation Res. 4, 567–577.PubMedCrossRefGoogle Scholar
  13. 11.
    De Serres, F.J. and Rømark, H.G. (1958), A direct method for determination of forward mutation rates in Neurospora crassa, Nature, 182, 1249–1250.CrossRefGoogle Scholar
  14. 12.
    Roman, H. (1956), ‘A system selective for mutations affecting the synthesis of adenine in yeast’, C.R. Labor. Carlsberg, 26, 299–314.Google Scholar
  15. 13.
    Leupold, L.S. (1955), ‘Versuche zur Genetischen Klassifizierung Adeninn-Abhängiger Mutanten von Schizosaccharomyces pombe’, Arch. Julius Klaus-Stift. Vererbungsforsch. Sozialanthropol. Rassenhyg., 30, 506–516.Google Scholar
  16. 14.
    Lederberg, J. (1950), ‘Isolation and characterisation of biochemical mutants of bacteria’, Methods in Medical Research, 3, 5–22.Google Scholar
  17. 15.
    Luria, S.E. and Delbrück, M. (1943), ‘Mutations of bacteria from virus sensitivity to virus resistance’, Genetics, 28, 491–511.PubMedGoogle Scholar
  18. 16.
    Novick, A. and Szilard, L. (1950), ‘Description of the Chemostat’, Science, 112, 715–716.PubMedCrossRefGoogle Scholar
  19. 17.
    Munson, R.J. and Jeffrey, A. (1964), ‘Reversion rate in continuous cultures of an Escherichia coli auxotroph exposed to γ rays’, J. Gen. Microbiol., 35, 191–203.PubMedCrossRefGoogle Scholar
  20. 18.
    Bryson, V. (1952), ‘Microbial selection. Part II: The Turbidostatic Selector — a device for automatic isolation of bacterial variants’, Science, 116, 48–51.CrossRefGoogle Scholar
  21. 19.
    Newcombe, H.B. (1949), Origin of bacterial variants’, Nature, 164, 150.PubMedCrossRefGoogle Scholar
  22. 20.
    Lederberg, J. and Lederberg, E.M. (1952), ‘Replica plating and indirect selection of bacterial mutants’, J. Bacter., 63, 399.Google Scholar
  23. 21.
    Vogt, M., Dulbecco, R. and Wenner, H.A. (1957), ‘Mutants of poliomyelitis viruses with reduced efficiency of plating in acid medium and reduced neuropathogenicity’, Virology, 4, 141–155.PubMedCrossRefGoogle Scholar
  24. 22.
    Mundry, K.W. and Gierer, A. (1958), ‘Die Erzeugung von Mutationen des Tabakmosaikvirus durch chemische Behandlung seiner Nukleinsäure in vitro’, Zeitsch. Vererb. Lehre, 89, 614–630.Google Scholar
  25. 23.
    Litman, R. and Ephrussi-Taylor, H. (1959), ‘Inactivation et mutation des facteurs génétiques de l’acide desoxyribonucléique du pneumocoque par l’ultraviolet et par l’acide nitreux’, C.R. Acad. Sc., 249, 838–840.Google Scholar
  26. 24a.
    Freese, E. and Strack, H.B. (1962), ‘Induction of mutation in transforming DNA by hydroxylamine’, Proc. Nat. Acad. Sci. U.S.A., 48, 1796–1803CrossRefGoogle Scholar
  27. 24b.
    Baltz, R.H. and Drake, J.W. (1972), ‘Bacteriophage T4 transformation: an assay for mutations induced in vitro’, Virology, 49, 462–474.PubMedCrossRefGoogle Scholar
  28. 25.
    Kao, F.T. and Puck, T.T. (1968), ‘Genetics of somatic mammalian cells. VII Induction and isolation of nutritional mutants in Chinese hamster cells’, Proc. Nat. Acad. Sci., U.S.A. 60, 1275–1281.CrossRefGoogle Scholar
  29. 26.
    Szybalski, W., Ragni, G. and Cohn, N.J. (1964), ‘Mutagenic response of human somatic cell lines’, Symp. Int. Soc. Cell Biol., 3, 209–221.Google Scholar
  30. 27.
    Albertini, R.J. and de Mars, R. (1970), ‘Diploid azaguanineresistant mutants of cultured human flbroblasts’, Science, 169, 482–485.CrossRefGoogle Scholar
  31. 28.
    Clive, D., Flamm, W.G., Macheska, M.R. and Bernheim, N.J. (1972), ‘Amutational assay system using the thymidine kinase locus in mouse lymphoma cells’, Mutation Res., 16, 77–87.PubMedCrossRefGoogle Scholar
  32. 29.
    Harris, M. (1971), ‘Mutation rates in cells at different ploidy levels’, J. Cell. Physiol., 78, 177–184.PubMedCrossRefGoogle Scholar
  33. 30.
    Sharp, J.D., Capecchi, N.E. and Capecchi, M.R. (1973), ‘Altered enzymes in drug-resistant variants of mammalian tissue culture cells’, Proc. Nat. Acad. Sci. U.S.A. 70, 3145–3149.CrossRefGoogle Scholar
  34. 31.
    Beaudet, A.L., Roufa, D.J. and Caskey, C.T. (1973), ‘Mutation affecting the structure of hypoxanthine: guanine phosphoribosyltransferase in cultured Chinese hamster cells’, Proc. Nat. Acad. Sct., U.S.A., 70, 320–324.CrossRefGoogle Scholar
  35. 32.
    Orgel, A. and Brenner, S. (1961), ‘Mutagenesis of bacteriophage T4 by acridines’, J. Mol. Biol., 3, 762–768.PubMedCrossRefGoogle Scholar
  36. 33.
    Streisinger, G., Okada, Y., Emrich, J., Newton, J., Tsugita, A., Terzaghi, E. and Inouye, M. (1966), ‘Frameshift mutations and the Genetic Code’, Cold Spring Harbor Symp. Quant. Biol., 31, 77–84.PubMedCrossRefGoogle Scholar
  37. 34.
    Yanofsky, C., Ito, J. and Horn, V. (1966), ‘Amino acid replacements and the Genetic Code’, Cold Spring Harbor Symp. Quant Biol., 31, 151–162.PubMedCrossRefGoogle Scholar
  38. 35.
    Prakash, L. and Sherman, F. (1973), ‘Mutagenic specificity: reversion of iso-1-cytochrome-c mutants of yeast’, J. Mol. Biol., 79, 65–82.PubMedCrossRefGoogle Scholar
  39. 36.
    Person, S. and Osborn, M. (1968), ‘The conversion of amber suppressors to ochre suppressors’, Proc. Nat. Acad. Sct., U.S.A., 60, 1030–1037.CrossRefGoogle Scholar
  40. 37.
    Ripley, L.S. and Drake, J.W. (1972), ‘A genetic assay for transversion mutations in bacteriophage T4’, Mol. Gen. Genet., 118, 1–10.PubMedCrossRefGoogle Scholar
  41. 38.
    Osborn, M., Person, S., Phillips, S. and Funk, F. (1967), ‘A determination of mutagen specificity in bacteria using nonsense mutants of bacteriophage T4’, J. Mol. Biol., 26, 437–447.PubMedCrossRefGoogle Scholar
  42. 39.
    De Serres, F.J. (1964), ‘Mutagenesis and chromosome structure’, J. Cell. Comp. Physiol., 64, Suppl. 1, 33–42.CrossRefGoogle Scholar
  43. 40.
    De Serres, F.J. and Mailing, H.V. (1969), ‘Identification of the genetic alterations in specific locus mutants at the molecular level’, Jap. J. Genetics, 44, Suppl. 1., 106–113.Google Scholar
  44. 41.
    De Serres, F.J., Brockman, H.E., Barnett, W.E. and Kølmark, H.G. (1967), ‘Allelic complementation among nitrous acidinduced ad-3B mutants of Neurospora crassa’, Mutation Res., 4, 415–424.PubMedCrossRefGoogle Scholar

Copyright information

© Charlotte Auerbach 1976

Authors and Affiliations

  • Charlotte Auerbach
    • 1
  1. 1.Institute of Animal GeneticsUniversity of EdinburghUK

Personalised recommendations