Advertisement

Irreversibility in Many-Body Systems

  • H. Wergeland

Abstract

Introduction. Part of the time(viz. after Gibbs) during which the question of irreversibility has been on the agenda of Theoretical Physics, Liouville’s theorem on the motion of volume elements in Phase Space has been the basis from which this discussion takes off: The points,
—each of which may represent a separate mechanical system - move around like an incompressible flow in the 2s-dimensional Cartesian space spanned by the coordinates (q_) and the momenta (p).

Keywords

Phase Space Brownian Motion Linear Chain Ergodic Theorem Recurrence Time 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

REFERENCES

  1. 1).
    H. Arnold, Foundations of Mechanics p. 108, Benjamin, New York, 1967.Google Scholar
  2. 2).
    J.W. Gibbs, Elementary Principles Ch. XII, p. 139, Longmans & Green, London 1928.Google Scholar
  3. 3).
    M. Delbrück and G. Moliere: Berl. Ber. Math. Phys. Klasse., n°- 1 (1936)Google Scholar
  4. 4).
    P. and T. Ehrenfest, Enc. Math. Wiss. IV2.Google Scholar
  5. 5).
    R.C. Tolman, Statistical Mechanics p.467, Oxford, 1938.Google Scholar
  6. 6).
    H. Poincaré, Acta Math. 13, 67 (1890).Google Scholar
  7. 7).
    W. Pauli, Vorlesungen über Wellenmechanik p. 123 ETH Zürich 1962.Google Scholar
  8. 8).
    P. Bocchieri and A. Loinger, Phys. Rev. 107, 337 (1957).MathSciNetADSMATHCrossRefGoogle Scholar
  9. 9).
    P.C. Hemmer, Trondheim thesis 1956.Google Scholar
  10. 10).
    G.D. Birkhoff, Proc. Nat. Acad. 1932.Google Scholar
  11. 11).
    See e.g. R. Abraham, Foundations of Mechanics Benjamin.Google Scholar
  12. 12).
    H. Grad, Comm. Pure and Appl. Math. 5, 455 (1952).Google Scholar
  13. 13).
    H. Wergeland, Acta Chem. Scand. 12, 1117, (1958).CrossRefGoogle Scholar
  14. 14).
    E. Schrödinger, Ann. Phys. 44, 916 (1914) (infinite chain)Google Scholar
  15. 15).
    I. Prigogine and G. Klein, Physica 19 1053 (1953) (finite chain)Google Scholar
  16. 16).
    A.N. Kolmogorov, Address to Int. Cong. Math. Amsterdam, 1954 (contained in ref. 11)Google Scholar
  17. 17).
    N. Saito, et al., Prog. Th. Phys. Supp. 45 (1970)Google Scholar
  18. 18).
    M. Toda. a) J.Phys. Soc. Jap. 22, 431 (1967)Google Scholar
  19. b) Prog. Th. Phys. Supp. 45, 174 (1970)Google Scholar
  20. c) One and two solitons in exponential chain: manuscript (1969)Google Scholar
  21. d) Wave propagation in anharmonic lattices: manuscript (1969).Google Scholar
  22. e) Interaction of solitons with e.m. waves, Physica Norvegica 5, 203 (1971)Google Scholar
  23. 19).
    M.C. Wang and G.E. Uhlenbeck, Rev. Mod. Phys. 17, 270 (1945)MathSciNetCrossRefGoogle Scholar
  24. 20).
    I. Fujiwara, P.C. Hemmer and H. Wergeland, Tomonaga Homage Volume Prog. Th. Phys. Supp. 37, 141 (1966).ADSCrossRefGoogle Scholar
  25. 21).
    M. Kac and H. Wergeland, D. Kgl. N. Vid. Selsk. Forh. 41, 48 (1968).MathSciNetMATHGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1972

Authors and Affiliations

  • H. Wergeland
    • 1
  1. 1.University of TrondheimTrondheimNorway

Personalised recommendations