Advertisement

Melanin Biosynthesis

Prerequisite for Successful Invasion of the Plant Host by Appressoria of Colletotrichum and Pyricularia
  • Yasuyuki Kubo
  • Iwao Furusawa

Abstract

A prerequisite for invasion of host plants by some plant pathogenic fungi is a differentiation of nonpathogenic spores into germinating spores that are accompanied by formation of the appressorium, which functions as an infection structure.

Keywords

Plant Pathogenic Fungus Appressorium Formation Melanin Biosynthesis Penetration Ability Rice Blast Disease 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Araki. F., and Miyagi, Y., 1977, Effects of fungicides on penetration by Pyricularia oryzae as evaluated by improved cellphane method,.1. Pestle. Sci. 2: 457–461CrossRefGoogle Scholar
  2. Bell, A. A., and Wheeler, M. H., 1986, Biosynthesis and formation of fungal melanins, Annu. Rev. Phytopathol. 24: 411–451.CrossRefGoogle Scholar
  3. Bell, A. A., Puhalla, J. E., Tolmsoff, W. J., and Stipanovic, R. D., 1976a, Use of mutants to establish (+)-scytalone as an intermediate in melanin biosynthesis by Verticillium dahliae, Can. J. Microbiol. 22: 787–799.PubMedCrossRefGoogle Scholar
  4. Bell, A. A., Stipanovic, R. D., and Puhalla, J. E., 1976b, Pentaketide metabolites of Verticillium dahliae: Identification of (+)-scytalone as a natural precursor to melanin, Tetrahedron 32: 1353–1356.CrossRefGoogle Scholar
  5. Bloomfield, B. J., and Alexander, M., 1967, Melanins and resistance of fungi to lysis, J. Bacteriol. 93: 1276–1280.PubMedGoogle Scholar
  6. Bull, A. T., 1970a, Chemical composition of wild and mutant Aspergillus nidulans cell walls. The nature of polysaccharides and melanin constituents, J. Gen. Microbiol. 63: 75–94.PubMedCrossRefGoogle Scholar
  7. Bull, A. T., 1970b, Inhibition of polysaccharases by melanin: Enzyme inhibition in relation to mycolysis, Arch. Biochem. Biophys. 137: 345–356.PubMedCrossRefGoogle Scholar
  8. Bustamam, M., and Sister, H. D., 1987, Effect of pentachloronitrobenzene, pentachloroaniline, and albinism on epidermal penetration by appressoria of Pyricularia, Pestic. Biochem. Physiol. 28: 29–37.CrossRefGoogle Scholar
  9. Chida, T., and Sister, H. D., 1987a, Restoration of appressorial penetration ability by melanin precursors in Pyricularia oryzae treated with anti-penetrants and in melanin-deficient mutants, J. Pestic. Sci. 12: 49–55.CrossRefGoogle Scholar
  10. Chida, T., and Sisler, H. D., 1987b, Effect of inhibitors of melanin biosynthesis on appressorial penetration and reductive reactions in Pyricularia oryzae and Pyricularia grisea, Pestic. Biochem. Physiol. 29: 244–251.CrossRefGoogle Scholar
  11. Dickman, M. B., and Patil, S. S., 1986, Cutinase deficient mutants of Colletotrichum gloeosporioides are nonpathogenic to papaya fruit, Physiol. Mol. Plant Pathol. 28: 235–242.CrossRefGoogle Scholar
  12. Durrell, L. W, 1964, The composition and structure of walls of dark fungus spores, Mycopathol. Mycol. App!. 23: 339–345.CrossRefGoogle Scholar
  13. Ellis, D. H., and Griffiths, D. A., 1974, The location and analysis of melanins in the cell walls of some soil fungi, Can. J. Microbiol. 20: 1379–1386.CrossRefGoogle Scholar
  14. Ellis, D. H., and Griffiths, D. A., 1975, Melanin deposition in the hyphae of a species of Phomopsis, Can. J. Microbiol. 21: 442–452.PubMedCrossRefGoogle Scholar
  15. Emmett, R. W, and Parbery, D. G., 1975, Appressoria, Annu. Rev. Phytopathol. 13: 147–167.CrossRefGoogle Scholar
  16. Geis, P. A., Wheeler, M. H., and Szaniszlo, P. J., 1984, Pentaketide metabolites of melanin synthesis in the dematiaceous fungus Wangiella dermatitidis, Arch. Microbiol. 137: 324–328.PubMedCrossRefGoogle Scholar
  17. Griffiths, D. A., and Campbell, W. P., 1973, Fine structure of conidial germination and appressorial development in Colletotrichum atramentarium, Trans. Br. Mycol. Soc. 61: 529–536.CrossRefGoogle Scholar
  18. Griffiths, D. A., and Swan, H. J., 1974, Conidial structure in two species of Pestalotiopsis, Trans. Br. Mycol. Soc. 62: 295–304.CrossRefGoogle Scholar
  19. Gull, K., and Trinci, A. P. J., 1974, Detection of areas of wall differentiation in fungi using fluorescent staining, Arch. Microbiol. 96: 53–57.CrossRefGoogle Scholar
  20. Inoue, S., and Kato, T., 1983, Mode of rice blast control by chrobenthiazone, J. Pestic. Sci. 8: 333–338.CrossRefGoogle Scholar
  21. Inoue, S., Maeda, K., Uematsu, T, and Kato, T., 1984a, Comparison of tetrachlorophthalide and pentachlorobenzyl alcohol with chrobenthiazone and other melanin inhibitors in the mechanism of rice blast control, J. Pestic. Sci. 9: 731–736.CrossRefGoogle Scholar
  22. Inoue, S., Uematsu, T., and Kato, T., 1984b, Effects of chrobenthiazone on the infection process by Pyricularia oryzae, J. Pestic. Sci. 9: 689–695.CrossRefGoogle Scholar
  23. Inoue, S., Uematsu, T., Kato, T., and Ueda, K., 1985, New melanin biosynthesis inhibitors and their structural similarities, J. Pestic. Sci. 16: 589–598.CrossRefGoogle Scholar
  24. Ishida, N., and Akai, S., 1968, Electron microscopic observation of cell wall structure during appressorium formation in Colletotrichum lagenarium, Mycopathol. Mycol. Appl. 35: 68–74.PubMedCrossRefGoogle Scholar
  25. Katoh, M., Hirose, I., Kubo, Y., Hikichi, Y., Kunoh, H., Furusawa, I., and Shishiyama, J., 1988, Use of mutants to indicate factors prerequisite for penetration of Colletotrichum lagenarium by appressoria, Physiol. Mol. Plant Pathol. 32: 177–184.CrossRefGoogle Scholar
  26. Kozar, F., and Netlitzky, H. J., 1978, Studies on hyphal development and appressorium formation of Colletotrichum graminicola, Can. J. Bot. 56: 2234–2242.CrossRefGoogle Scholar
  27. Kubo, Y., 1986, Melanin biosynthesis in fungi, Trans. Mycol. Soc. Jpn. 27: 487–500.Google Scholar
  28. Kubo, Y., and Furusawa, I., 1986, Localization of melanin in appressoria of Colletotrichum lagenarium, Can. J. Microbiol. 32: 280–282.CrossRefGoogle Scholar
  29. Kubo, Y., Suzuki, K., Furusawa, I., Ishida, N., and Yamamoto, M., 1982a, Relation of appressorium pigmentation and penetration of nitrocellulose membranes by appressoria of Colletotrichum lagenarium, Phytopathology 72: 498–501.CrossRefGoogle Scholar
  30. Kubo, Y., Suzuki, K., Furusawa, I., and Yamamoto, M., 1982b, Effect of tricyclazole on appressorial pigmenta- tion and penetration from appressoria of Colletotrichum lagenarium, Phytopathology 72: 1198–1200.CrossRefGoogle Scholar
  31. Kubo, Y.. Suzuki, K., Furusawa, I., and Yamamoto, M., 1983, Scytalone as a natural intermediate of melanin biosynthesis in appressoria of Colletotrichumn lagerta•iurn, Exp. Mycol. 7: 208–215.Google Scholar
  32. Kubo, Y., Furusawa, I., and Yamamoto, M., 1984, Regulation of melanin biosynthesis during appressorium formation in Colletotrichum lagenarium, Exp. Mycol. 8: 364–369.CrossRefGoogle Scholar
  33. Kubo, Y., Suzuki, K., Furusawa, I., and Yamamoto, M., 1985, Melanin biosynthesis as a prerequisite for penetration by appressoria of Colletotrichum lagenarium: Site of inhibition by melanin-inhibiting fungicides and their action on appressoria, Pestic. Biochem. Physiol. 23: 47–55.CrossRefGoogle Scholar
  34. Kubo, Y., Katoh, M., Furusawa, I., and Shishiyama, J., 1986, Inhibition of melanin biosynthesis by cerulenin in appressoria of Colletotrichum lagenarium, Exp. Mycol. 10: 301–306.CrossRefGoogle Scholar
  35. Kubo, Y., Furusawa, I., and Shishiyama, J., 1987, Relation between pigment intensity and penetrating ability in appressoria of Colletotrichum lagenariutn, Can. J. Microbiol. 33: 871–873.CrossRefGoogle Scholar
  36. Kubo, Y., Tsuda, M., Furusawa, I., and Shishiyama, J., 1989, Genetic analysis of genes involved in melanin biosythesis of Cochliobolus miyabeanus, Exp. Mycol. 13: 77–89.CrossRefGoogle Scholar
  37. Kuo, M. J., and Alexander, M., 1967, Inhibition of the lysis of fungi by melanins, J. Bacterial. 94: 624–629.Google Scholar
  38. Lazarovits, G., and Stoessl, A., 1988, Tricyclazole induces melanin shunt products and inhibits altersolanol A accumulation by Alternaria solani, Pestic. Biochem. Physiol. 31: 36–45.CrossRefGoogle Scholar
  39. Lockwood, J. L., 1960, Lysis of mycelium of plant pathogenic fungi by natural soil, Phytopathology 50: 787–789.Google Scholar
  40. Mercer, P. C., Wood, R. K. S., and Greenwood, A. D., 1975, Ultrastructure of the parasitism of Phaseolus vulgaris by Colletotrichum lindemuthiatum, Physiol. Plant Pathol. 5: 203–214.CrossRefGoogle Scholar
  41. Mitchel, R., and Sabar, N., 1966, Autolytic enzymes in fungal cell walls, J. Gen. Microbiol. 42: 39–42.CrossRefGoogle Scholar
  42. Okuno, T, Matsuura, K., and Furusawa, I., 1983, Recovery of appressorial penetration by some melanin precursors in Pyricularia oryzae treated with tricyclazole and in a melanin deficient mutant, J. Pestic. Sci. 8: 357–360.CrossRefGoogle Scholar
  43. Omura, S., 1976, The antibiotic cerulenin, a novel tool for biochemistry as an inhibitor of fatty acid synthesis, Bacterial. Rev. 40: 681–697.Google Scholar
  44. Polacheck, I., and Rosenberger, R. F., 1977, Aspergillus nidulans mutant lacking a-(1,3)-glucan, melanin, and cleistothecia, J. Bacterial. 132: 650–656.Google Scholar
  45. Politis, D. J., and Wheeler, H., 1973, Ultrastructural study of penetration of maize leaves by Colletotrichum graminicola, Physiol. Plant Pathol. 3: 465–471.CrossRefGoogle Scholar
  46. Potgieter, H. J., and Alexander, M., 1966, Susceptibility and resistance of several fungi to microbial lysis, J. Bacterial. 91: 1526–1532.Google Scholar
  47. Reyes, F., and Lahoz, R., 1977, Variations in lysis of walls of Sclerotinia fructigena with age of culture, J. Gen. Microbiol. 98: 607–610.CrossRefGoogle Scholar
  48. Seifers, D., and Ammon, V., 1980, Mode of penetration of sycamore leaves by Gloeosporium platani, Phytopathology 70: 1050–1055.CrossRefGoogle Scholar
  49. Stipanovic, R. D., and Bell, A. A., 1976, Pentaketide metabolites of Verticillium dahliae. 3. Identification of 3,4 dihydro 3,8-dihydroxy-1(2H)napthalenonel(-)-vermelonel as a precursor to melanin, J. Org. Chem. 41: 2468–2469.PubMedCrossRefGoogle Scholar
  50. Stipanovic, R. D., and Bell, A. A., 1977, Pentaketide metabolites of Verticillium dahliae. II. Accumulation of naphthol derivatives by the aberrant-melanin mutant brm-2, Mycologia 69: 164–172.PubMedCrossRefGoogle Scholar
  51. Stipanovic, R. D., and Wheeler, M. H., 1980, Accumulation of 3,3’-bifiaviolin, a melanin shunt product, by tricyclazole treated Thielaviopsis basicola, Pestic. Biochem. Physiol. 13: 198–201.CrossRefGoogle Scholar
  52. Sussman, A. S., 1968, Longevity and survivability of fungi, in: The Fungi, Volume III ( G. C. Ainsworth and A. S. Sussman, eds.), Academic Press, New York, pp. 447–486.Google Scholar
  53. Suzuki, K., Furusawa, I., Ishida, N., and Yamamoto, M., 1981, Protein synthesis during germination and appressorium formation of Colletotrichum lagenarium spores, J. Gen. Microbial. 124: 61–69.Google Scholar
  54. Suzuki, K., Furusawa, I., ishida, N., and Yamamoto, M., 1982a, Chemical dissolution of cellulose membranes as a prerequisite for penetration from appressoria of Colletotrichum lagenarium, J. Gen. Microbial. 128: 1035–1039.Google Scholar
  55. Suzuki, K., Kubo, Y., Furusawa, I., Ishida N. and Yamamoto, M., 1982b, Behavior of colorless appressoria in an albino mutant of Colletotrichum lagenarium, Can. J. Microbial. 28: 1210–1213.CrossRefGoogle Scholar
  56. Suzuki, K., Furusawa, I., and Yamamoto, M., 1983, Role of chemical dissolution of cellulose membranes in the appressorial penetration by Colletotrichum lagenarium, Ann. Phytopathol. Soc. Jpn. 49: 481–487.CrossRefGoogle Scholar
  57. Tajima, S., Kubo, Y., Furusawa, I., and Shishiyama, J., 1989, Purification of a melanin biosynthetic enzyme converting scytalone to 1,3,8-trihydroxynapthalene from Cochliobolus miyabeanus, Exp. Mycol. 13: 69–76.CrossRefGoogle Scholar
  58. Tokousbalides, M. C., and Sisler, H. D., 1978, Effect of tricyclazole on growth and secondary metabolism in Pyricularia oryzae. Pestic. Biochem. Physiol. 8: 26–32.CrossRefGoogle Scholar
  59. Tokousbalides, M. C., and Sisler, H. D., 1979, Site of inhibition by tricyclazole in the melanin biosynthetic pathway of Verticillium dahliae, Pestic. Biochem. Physiol. 11: 64–73.CrossRefGoogle Scholar
  60. Tsao, P. W, and Tsao, P. H., 1970, Electron microscopic observation on the spore wall and operculum formation in chlamydospores of Thielaviopsis basicola, Phytopathology 60: 613–616.CrossRefGoogle Scholar
  61. Wheeler, M. H., 1982, Melanin biosynthesis in Verticillium dahliae: Dehydration and reduction reactions in cell free homogenates, Exp. Mycol. 6: 171–179.CrossRefGoogle Scholar
  62. Wheeler, M. H., 1983, Comparison of fungal melanin biosynthesis in ascomycetes, imperfect and basidiomycetous fungi, Trans. Br. Mycol. Soc. 81: 29–36.CrossRefGoogle Scholar
  63. Wheeler, M. H., and Greenblatt, G. A., 1988, The inhibition of melanin biosynthetic reactions in Pyricularia oryzae by compounds that prevent rice blast disease, Exp. Mycol. 12: 151–160.CrossRefGoogle Scholar
  64. Wheeler, M. H., and Stipanovic, R. D., 1979, Melanin biosynthesis in Thielaviopsis basicola, Exp. Mycol. 3: 340–350.CrossRefGoogle Scholar
  65. Wheeler, M. H., and Stipanovic, R. D., 1985, Melanin biosynthesis and the metabolism of flaviolin and 2-hydroxyjuglone in Wangiella dermatitidis, Arch Microbiol. 142: 234–241.PubMedCrossRefGoogle Scholar
  66. Wheeler, M. H., Tolmsoff, W. J., and Meola, S., 1976, Ultrastructure of melanin formation in Verticillium dahliae with scytalone as a biosynthetic intermediate, Can. J. Microbiol. 22: 702–711.PubMedCrossRefGoogle Scholar
  67. Wheeler, M. H., Tolmsoff, W. J., and Bell, A. A. 1978, Ultrastructural and chemical distinction of melanins formed by Verticillium dahliae from scytalone, 1,8-dihydroxynaphthalene, and L-3,4-dihydroxynaphthalene, Can. J. Microbiol. 24: 289–297.PubMedCrossRefGoogle Scholar
  68. Wolkow, P. M., Sisler, H. D., and Vigil, E. L., 1983, Effect of inhibitors of melanin biosynthesis on structure and function of appressoria of Colletotrichum lindemuthianum, Physiol. Plant Pathol. 23: 55–72.CrossRefGoogle Scholar
  69. Woloshuk, C. P., and Sisler, H. D., 1982, ‘Iricyclazole, pyroquilon, tetrachlorophthalide, PCBA, coumarine and related compounds inhibit melanization and epidermal penetration by Pyricularia oryzae, J. Pestic. Sci. 7: 161–166.Google Scholar
  70. Woloshuk, C. P., Sisler, H. D., Tokousbalides, M. C., and Dutky, S. R., 1980, Melanin biosynthesis in Pyricularia oryzae: Site of tricyclazole inhibition and pathogenicity of melanin-deficient mutants, Pestic. Biochem. Physiol. 14: 256–264.CrossRefGoogle Scholar
  71. Woloshuk, C. P., Wolkow, P. M., and Sisler, H. D., 1981, The effect of three fungicides, specific for the control of rice blast disease, on the growth and melanin biosynthesis by Pyricularia oryzae Cav, Pestic. Sci. 12: 86–90.CrossRefGoogle Scholar
  72. Woloshuk, C. P., Sisler, H. D., and Vigil, E. L., 1983, Action of antipenetrant, tricyclazole on appressoria of Pyricularia oryzae, Physiol. Plant Pathol. 22: 245–259.Google Scholar
  73. Yamaguchi, I., Sekido, S., and Misato, T., 1982, The effect of non-fungicidal antiblast chemicals on the melanin biosynthesis and infection by Pyricularia oryzae. J. Pestic. Sci. 7: 523–529.CrossRefGoogle Scholar
  74. Yamaguchi, I., Sekido, S., and Misato, T., 1983a, Inhibition of appressorial melanization in Pyricularia oryzae by non-fungicidal anti-blast chemicals, J. Pestic. Sci. 8: 229–232.CrossRefGoogle Scholar
  75. Yamaguchi, I., Sekido, S., Seto, H., and Misato, T, 1983b, Cytotoxic effect of 2-hydroxyjuglone, a metabolite in the branched pathway of melanin biosynthesis in Pyricularia oryzae, J. Pestic. Sci. 8: 545–550.CrossRefGoogle Scholar
  76. Zeun, R., and Buchenauer, H., 1985, Effect of tricyclazole on production and melanin contents of sclerotia of Botrytis cinerea, Phytopathol. Z. 112: 259–267.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1991

Authors and Affiliations

  • Yasuyuki Kubo
    • 1
  • Iwao Furusawa
    • 1
  1. 1.Laboratory of Plant Pathology, Faculty of AgricultureKyoto UniversityKyoto 606Japan

Personalised recommendations