The Fate of Fungal Spores in the Insect Gut

  • R. J. Dillon
  • A. K. Charnley


Suctorial insects in the main are not exposed to a large enteric microbial inoculum. In contrast, mandibulate insects ingest a wide range of microorganisms with their food. Enforced association between insects and their microbes particularly during feeding has led to the evolution of a wide variety of formal, and informal relationships which are amply illustrated by insect—fungus interactions. Fungi inhabit the gut as commensals, e.g., Trichomycetes (Moss, 1979); symbionts, e.g., yeasts provide essential nutrients (Pant and Fraenkel, 1950; Chararas et al., 1983); commuters, e.g., plant pathogens in transit (Ingold, 1971); exoparasites, e.g., Laboulbeniales (Bell, 1974); or potential endoparasites (pathogens; Roberts and Humber, 1981). Exploitation of fungi by insects occurred early in evolution as feeding on dead or decaying material is probably the primitive condition among the class Insecta (Southwood, 1972). Direct mycophagy is also an important feeding habit (Martin, 1979; Kukor and Martin, 1987). Symbiotic associations have developed between insects and fungi with possibly the pinnacle being the fungal gardens of leaf-cutting ants (Weber, 1966; Boyd and Martin, 1975a,b).


Fungal Spore Entomopathogenic Fungus Mosquito Larva Alimentary Canal Malpighian Tubule 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Abrams, G. D., and Bishop, J. E., 1966, Effect of the normal microbial flora on the resistance of the small intestine to infection, J. Bacteriol. 92: 1604–1608.PubMedGoogle Scholar
  2. Agudelo, F., and Falcon, L. A., 1983, Mass production, infectivity and field application studies with the entomogenous fungus Paecilomyces farinosus, J. Invertebr. Pathol. 42: 124–132.CrossRefGoogle Scholar
  3. Agudelo-Silva, F., and Wassink, H., 1984, Infectivity of a Venezuelan strain of Metarhizium anisopliae to Aedes aegypti larvae, J. Invertebr. Pathol. 43: 435–436.PubMedCrossRefGoogle Scholar
  4. Al-Aidroos, K., and Roberts, D. W., 1978, Mutants of Metahizium anisopliae with increased virulence towards mosquito larvae. Can. J. Genet. Cytol. 20: 211–219.Google Scholar
  5. Allee, L. L., Goettel, M. S., Golberg, A., Whitney, H. S., and Roberts, D. W, 1990, Infection by Beauveria bassiana of per os inoculated Leptinotarsa decemlineata larvae occurs following fecal contamination of the integument, unpublished.Google Scholar
  6. Allison, C., and Macfarlane, G. T., 1988, Production of volatile phenols by human intestinal bacteria, J. App! Bacteriol. 65(6):xviii.Google Scholar
  7. Andersen, S. O., 1980, Cuticular sclerotization, in: Cuticle Techniques in Arthropods (T. A. Miller, ed.), Springer-Verlag, Berlin, pp. 185–215.CrossRefGoogle Scholar
  8. Anstee, J. H., and Charnley, A. K., 1977, Effects of frontal ganglion removal and starvation on activity and distribution of six gut enzymes in Locusta, J. Insect Physiol. 23: 965–974.CrossRefGoogle Scholar
  9. Baines, D. M., Bernays, E. A., and Leather, E. M., 1973, Movement of food through the gut of fifth instar males of Locusta migratoria migratorioides (R and F), Acrida 2 (4): 319–332.Google Scholar
  10. Balish, E., and Phillips, A. W, 1966a, Growth, morphogenesis, and virulence of Candida albicans after oral inoculation in the germ free and conventional chick, J. Bacteriol. 91 (5): 1736–1743.PubMedGoogle Scholar
  11. Balish, E., and Phillips, A. W.,19666, Growth and virulence of Candida albicans after oral inoculation in the chick with a monoflora of either Escherichia coli or Streptococcus faecalis, J. Bacteriol. 91(5):1744–1749.Google Scholar
  12. Bamford, S., and Heath, L. A. F., 1990, The infection of Apis mellifera larvae by Ascosphaera apis, J. Apic. Res. (in press).Google Scholar
  13. Bao, C., and Yendol, W. G., 1971, Infection of the eastern subterranean termite, Reticulitermes flavipes with the fungus Beauveria bassiana, Entomophaga 16: 343–352.CrossRefGoogle Scholar
  14. Bayon, C., 1980, Volatile fatty acids and methane production in relation to anaerobic carbohydrate fermentation in Oryctes nasicornis larvae (Coleoptera: Scarabaeidae), J. Insect Physiol. 26: 819–828.CrossRefGoogle Scholar
  15. Becker, B., 1978, Determination of the formation rate of peritrophic membranes in some Diptera, J. Insect Physiol. 24: 529–533.CrossRefGoogle Scholar
  16. Bell, J. V., 1974, Mycoses, in: Insect Diseases,Volume 1 (G. E. Cantwell, ed.), Dekker, New York, pp. 185–236.Google Scholar
  17. Bell, J. V., and Hamalle, R. J., 1980, Heliothis zea larval mortality time from topical and per os dosages of Nomuraea rileyi conidia, J. Invertebr. Pathol. 35: 182–185.Google Scholar
  18. Bernays, E. A., 1981, A specialized region of the gastric caeca in the locust, Schistocerca gregaria, Physiol. Entomol. 6: 1–6.CrossRefGoogle Scholar
  19. Bertram, D. S., and Bird, R. G., 1961, Studies on mosquito borne viruses in their vectors. I. The normal fine structure of the midgut epithelium of the female Aedes aegypti and the functional significance of its modifications following a blood meal, Trans. R. Soc. Trop. Med. Hyg. 55: 404–423.PubMedCrossRefGoogle Scholar
  20. Bignell, D. E., 1984, The arthropod gut as an environment for microorganisms, in: Invertebrate, Microbial Interactions, British Mycological Symposium, Volume 6 ( J. M. Anderson, A. D. M. Rayner, and D. Walton, eds.), Cambridge University Press, London, pp. 205–227.Google Scholar
  21. Blum, M. S. (ed.), 1981, Chemical Defenses of Arthropods, Academic Press, New York.Google Scholar
  22. Boonchird, C., and Flegel, T. W, 1982, In vitro antifungal activity of eugenol and vanillin against Candida albicans and Cryptococcus neoformans, Can. J. Microbial. 28: 1235–1241.CrossRefGoogle Scholar
  23. Soucias, D. G., Pendland, J. C., and Latge, J. P, 1988, Nonspecific factors involved in attachment of entomopathogenic Deuteromycetes to host insect cuticle, Appl. Environ. Microbial. 54: 1795–1805.Google Scholar
  24. Bowden, G. H. W., Elwood, D. C., and Hamilton, I. R., 1979, Microbial ecology of the oral cavity, in: Advances in Microbial Ecology, Volume 3 (M. Alexander, ed.), Plenum Press, New York.Google Scholar
  25. Boyd, N. D., and Martin, M. M., 1975a, Faecal proteinases of the fungus growing ant, Atta texana: Properties, significance and possible origin, Insect Biochem. 5: 619–635.CrossRefGoogle Scholar
  26. Boyd, N. D., and Martin, M. M., 1975b, Faecal proteinases of the fungus growing ant, Atta texana: Their fungal origin and ecological significance, J. Insect Physiol. 21: 1815–1820.CrossRefGoogle Scholar
  27. Bracke, J. W., Cruden, D. L., and Markovetz, A. J., 1978, Effect of metronidazole on the intestinal microflore of the American cockroach, Periplaneta americana L. Antimicrob. Agents Chemother. 13 (1): 115–120.PubMedCrossRefGoogle Scholar
  28. Bracke, J. W, Cruden, D. L., and Markovetz, A. J., 1979, Intestinal microbial flora of the American cockroach, Periplaneta americana L., Appl. Environ. Microbiol. 38: 945–955.Google Scholar
  29. Bradley, T. J., 1985, The excretory system: Structure and physiology, in: Comprehensive Insect Physiology, Biochemistry and Pharmacology, Volume 4 ( G. A. Kerkut and L. I. Gilbert, eds.), Pergamon Press, New York, pp. 421–506.Google Scholar
  30. Brandt, C. R., Adang, M. J., and Spence, K. D., 1978, The peritrophic membrane: Ultrastructural analysis and function as a mechanical barrier to microbial infection in Orygia pseudotsugata, J. Invertebr. Pathol. 32: 12–24.CrossRefGoogle Scholar
  31. Breznak, J. A., 1984, Biochemical aspects of symbiosis between termites and their intestinal microbiotia, in: Invertebrate, Microbial Interactions, British Mycological Symposium, Volume 6 ( J. M. Anderson, A. D. M. Rayner, and D. Walton, eds.), Cambridge University Press, London, pp. 173–203.Google Scholar
  32. Brooks, M. A., 1963, The microorganisms of healthy insects, in: Insect Pathology, Volume 1 ( E. A. Steinhaus, ed.), Academic Press, New York, pp. 215–250.CrossRefGoogle Scholar
  33. Broome, J. R., Sikorowski, P P, and Norment, B. R., 1976, A mechanism of pathogenicity of Beauveria bassiana on larvae of the imported fire ant, Solenopsis richteri, J. Invertebr. Pathol. 28: 87–91.CrossRefGoogle Scholar
  34. Buchner, P. (ed.), 1965, Endosymbiosis of Animals with Plant Microorganisms, Interscience, New York.Google Scholar
  35. Burkhardt, H. J., Maizel, J. V., and Mitchell, H. K., 1964, Avenacin, and antimicrobial substance isolated from Avena sativa. II. Structure, Biochemistry 3: 426–431.PubMedCrossRefGoogle Scholar
  36. Burnside, C. E., 1930, Fungous diseases of the honey bee, U.S. Dept. Agric. Tech. Bull. 149: 43.Google Scholar
  37. Chapman, R. F., 1985, Structure of the digestive system, in: Comprehensive Insect Physiology, Biochemistry, and Pharmacology, Volume 4 ( G. A. Kerkut and L. I. Gilbert, eds.), Pergamon Press, New York, pp. 165–211.Google Scholar
  38. Chararas, C., Pignal, M. C., Vodjdani, G., and Bourgeay-Causse, 1983, Glycosidases and B group vitamins produced by six yeast strains from the digestive tract of Phoracantha semipunctata larvae and their role in insect development, Mycopathologia 83: 9–15.CrossRefGoogle Scholar
  39. Charnley, A. K., 1984, Physiological aspects of pathogenesis in insects by fungi: A speculative review, in: Invertebrate, Microbial Interactions, British Mycological Symposium, Volume 6 ( J. M. Anderson, A. D. M. Rayner, and D. Walton, eds.), Cambridge University Press, London, pp. 229–271.Google Scholar
  40. Charnley, A. K., Hunt, J., and Dillon, R. J., 1985, The germ free culture of desert locusts Schistocerca gregaria, J. Insect Physiol. 31: 477–485.CrossRefGoogle Scholar
  41. Chase, D. G., and Erlandsen, S. L., 1976, Evidence for a complex life cycle and endospore formation, in attached, filamentous, segmented bacterium from murine ileum, J. Bacterial. 127: 572–583.Google Scholar
  42. Cheung„P. Y. K., and Grula, E. A., 1982, In vivo events associated with entomopathology of Beauveria bassiana for the corn earworm Heliothis zea, J. Invertebr. Pathol. 39: 303–313.Google Scholar
  43. Claverie-Martin, F., Diaz-Torres, M. R., and Geoghegan, M. J., 1988, Chemical composition and ultrastructure of wild type and white mutant Aspergillus nidulans conidial walls, Curr. Microbio. 16: 281–287.CrossRefGoogle Scholar
  44. Cochrane, V. W. (ed.), 1958, Physiology of Fungi, Wiley, New York.Google Scholar
  45. Cole, G. T., 1986, Models of cell differentiation in conidial fungi, Microbial. Rev. 50: 95–132.Google Scholar
  46. Cotmore, J. M., Burke, A., Lee, N. H., and Shapiro, I. M., 1979, Respiratory inhibition of isolated rat liver mitochondria by eugenol, Arch. Oral Biol. 34: 565–568.CrossRefGoogle Scholar
  47. Crisan, E. V, 1971, Mechanism responsible for release of toxin by Metarhizium spores in mosquito larvae, J. Invertebr. Pathol. 17: 260–264.PubMedCrossRefGoogle Scholar
  48. Cruden, D. L., and Markovetz, A. J., 1987, Microbial ecology of the cockroach gut, Annu. Rev. Microbiol. 41: 617–643.PubMedCrossRefGoogle Scholar
  49. Daoust, R. A., and Gunner, H. G., 1979, Microbial synergists pathogenic to Lymantria dispar: Chitinolytic and fermentative bacterial interactions, J. Invertebr. Pathol. 33: 368–377.Google Scholar
  50. Dauterman, W. C., 1985, Insect metabolism: Extramicrosomal, in: Comprehensive Insect Physiology, Biochemistry and Pharmacology, Volume 4 ( G. A. Kerkut and L. I. Gilbert, eds.), Pergamon Press, New York, pp. 713–730.Google Scholar
  51. Deverall, B. J., 1976, Current perspectives in research on phytoalexins, in: Biochemical Aspects of Plant Parasite Relationships, ( J. Friend and D. R. Threlfall, eds.), Academic Press, New York, pp. 207–223.Google Scholar
  52. Dillon, R. J., 1984, Studies on the pathogenicity of Metarhizium anisopliae (Metch.) Sorok. to Schistocerca gregaria (Forsk.) with particular reference to the gut, Ph.D. thesis, University of Bath, England.Google Scholar
  53. Dillon, R. J., and Charnley, A. K., 1986a, Inhibition of Metarhizium anisopliae by the gut bacterial flora of the desert locust, Schistocerca gregaria: Evidence for an antifungal toxin, J. Invertebr. Pathol. 47: 350–360.CrossRefGoogle Scholar
  54. Dillon, R. J., and Charnley, A. K., 1986b, Invasion of the pathogenic fungus Metarhizium anisopliae through the guts of germ-free desert locusts, Schistocerca gregaria, Mycopathologia 96: 59–66.CrossRefGoogle Scholar
  55. Dillon, R. J., and Charnley, A. K., 1988, Inhibition of Metarhizium anisopliae by the gut bacterial flora of the desert locust: characterisation of antifungal toxins, Can. J. Microbiol. 34: 1075–1082.CrossRefGoogle Scholar
  56. Dillon, R. J., and Charnley, A. K., 1990, Initiation of germination in conidia of the entomopathogenic fungus, Metarhizium anisopliae, Mycol. Res. 94 (3): 299–304.CrossRefGoogle Scholar
  57. Dillon, R. J., Charnley, A. K., and Hunt, J., 1986, Contribution of the gut bacterial flora to the physiology of the desert locust, Schistocerca gregaria, J. Appl. Bacteriol. 61(6):xiv.Google Scholar
  58. Dillon, R. J., Charnley, A. K., and Ratcliffe, N. A., 1987, The immunology of germ-free desert locusts, Schistocerca gregaria, 20th Annual Meeting of Society of Invertebrate Pathology, Abstract, p. 28.Google Scholar
  59. Dow, J. A. T., 1981, Countercurrent flows, water movements and nutrient absorption in the locust midgut, J. Insect Physiol. 27: 579–585.CrossRefGoogle Scholar
  60. Duffey, S. S., and Blum, M. S., 1977, Phenol and guaiacol: Biosynthesis, detoxication, and function in a polydesmid millipede, Oxidus gracilis, Insect Biochem. 7: 57–65.CrossRefGoogle Scholar
  61. Eisner, T., 1970, Chemical defense against predation in arthropods, in: Chemical Ecology ( E. Sondheimer and J. B. Simeone, eds.), Academic Press, New York, pp. 157–217.Google Scholar
  62. Enei, H., Matsui, H., Yamashita, K., Okumura, S., and Yamada, H., 1972, Distribution of tyrosine phenol lyase in microorganisms, Agric. Biol. Chem. 36: 1861–1868.CrossRefGoogle Scholar
  63. Eutick, M. L., O’Brien, R. W, and Slaytor, M., 1978, Bacteria from the gut of australian termites, Appl. Environ. Microbial. 35: 823–828.Google Scholar
  64. Evans, W. A. L., and Payne, D. W, 1964, Carbohydrases of the alimentary tract of the desert locust Schistocerca gregaria Forsk., J. Insect Physiol. 10: 657–674.CrossRefGoogle Scholar
  65. Fargues, J., Reisinger, O., Robert, P. H., and Aubart, C., 1983, Biodegradation of entomopathogenic Hyphomycetes: Influence of clay coating on Beauveria bassiana blastospore survival in the soil, J. Invertebr. Pathol. 41: 131–142.CrossRefGoogle Scholar
  66. Ferron, R, 1978, Biological control of insect pests by entomogenous fungi, Annu. Rev. Entomol. 23: 409–442.CrossRefGoogle Scholar
  67. Foote, H. L., 1957, Possible use of microorganisms in synthetic bee bread production, Am. Bee J. 98: 476–478.Google Scholar
  68. Friend, J., 1981, Plant phenolics, lignification and plant disease, in Progress in Phytochemistry, Volume 7 ( L. Reinhold, J. B., Harborne, and T. Swain, eds.), Pergamon Press, New York, pp. 197–261.Google Scholar
  69. Fuhrer, E., and Willers, D., 1986, The anal secretion of the endoparasitic larva Pimpula turionellae: Sites of production and effects, J. Insect Physiol. 32: 361–367.CrossRefGoogle Scholar
  70. Fuller, R., 1978, Epithelial attachment and other factors controlling the colonization of the intestine of the gnotobiotic chicken by lactobacilli, J. Appl. Bacteriol. 45: 389–395.CrossRefGoogle Scholar
  71. Gabriel, B. R, 1959, Fungus infection of insects via the alimentary tract, J. Insect Pathol. 1: 319–330.Google Scholar
  72. Gilliam, G., Taber, III, S., Lorenz, B. J., and Prest, D. B., 1988, Factors affecting development of chalkbrood disease in colonies of honey bees Apis mellifera, fed pollen contaminated with Ascosphaera apis, J. Invertebr. Pathol. 52: 314–325.Google Scholar
  73. Goettel, M. S., 1988a, Pathogenesis of the hyphomycete Tolypocladium cylindrosporum in the mosquito Aedes aegypti, J. Invertebr. Pathol. 51: 259–274.PubMedCrossRefGoogle Scholar
  74. Goettel, M. S., 1988b, Viability of Tolypocladium cylindrosporum conidia following ingestion and excretion by larval Aedes aegypti, J. Invertebr. Pathol. 51: 275–277.CrossRefGoogle Scholar
  75. Goldstein, J. L., and Swain, T., 1965, The inhibition of enzymes by tannins, Phytochemistry 4: 185–192.CrossRefGoogle Scholar
  76. Goodhue, D., 1963, Some differences in the passage of food through the intestines of the desert and migratory locusts, Nature 200: 288–289.CrossRefGoogle Scholar
  77. Gottlieb, D. (ed.), 1978, The Germination of Fungus Spores, Meadowfield Press, Durham.Google Scholar
  78. Greathouse, G. A., and Watkins, G. M., 1938, Berberine as a factor in the resistance of Mahonia trifoliata and M. swaseyi to Phymatotrichum root rot, Am. J. Bot. 25: 743–748.CrossRefGoogle Scholar
  79. Greenberg, B., Kowalski, J. A., and Klowden, M. J., 1968, Model for destruction of bacteria in the midgut of blowfly maggots, J. Med. Entomol. 5: 31–38.PubMedGoogle Scholar
  80. Greenberg, B., Kowalski, J. A., and Klowden, M. J., 1970, Factors affecting the transmission of Salmonella by flies: Natural resistance to colonization and bacterial interference, Infect. Immun. 2: 800–809.PubMedGoogle Scholar
  81. Greenhalgh, J. R., and Watkins, N. D., 1976, The involvement of flavour volatiles in the resistance to downy mildew of wild and cultivated forms of Brassica oleracea, New Phytol. 77: 391–398.CrossRefGoogle Scholar
  82. Griffiths, E., 1983, Availability of iron and survival of bacteria in infection, in: Medical Microbiology, Volume 3 ( C. S. F. Easmon, M. Brown, and P A. Lambert, eds.), Academic Press, New York, pp. 150–177.Google Scholar
  83. Griffiths, E., 1986, Iron and biological defense mechanisms, in: Natural Antimicrobial Systems, FEMS Symposium No. 35 ( G. W. Gould, M. E. Rhodes-Roberts, A. K. Charnley, R. M. Cooper, and R. G. Board, eds.), Bath University Press, England, pp. 56–71.Google Scholar
  84. Griffiths, L. A., and Barrow, A., 1972, Metabolism of flavenoid compounds in germ free rats, Biochem. J. 130: 1161–1162.PubMedGoogle Scholar
  85. Hall, R., 1981, Physiology of conidial fungi, in: Biology of Conidial Fungi, Volume 2 ( G. T. Cole, and B. Kendrick, eds.), Academic Press, New York, pp. 417–457.CrossRefGoogle Scholar
  86. Harborne, J. B. (ed.), 1984, Phytochemical Methods, Chapman and Hall, London.Google Scholar
  87. Hasan, S., 1982, The possible role of two species of Orthoptera in the dissemination of a plant pathogenic fungus, Ann. Appt. Biol. 101: 205–209.CrossRefGoogle Scholar
  88. Haydak, M. H., 1958, Pollen, pollen substitutes, bee bread, Am. Bee J. 98: 145–146.Google Scholar
  89. Heath, L. A. F., and Gaze, B. M., 1987, Carbon dioxide activation of spores of the chalkbrood fungus Ascosphaera apis, J. Apic. Res. 26 (4): 243–246.Google Scholar
  90. Henry, S. M., 1964, Intestinal microorganisms of the cockroach with and without intracellular symbionts, XIIth Int. Congr. Entomol. Proc., Section III, p. 748.Google Scholar
  91. Hill, M. J., Fadden, K., Fernandez, F., and Roberts, A. K., 1986, Biochemical basis for microbial antagonism in the intestine, in: Natural Antimicrobial Systems, FEMS Symposium No. 35 (G. W. Gould, M. E. Rhodes-Roberts, A. K. Charnley, R. M. Cooper, and R. G. Board, eds.), Bath University Press, England, pp. 29–39.Google Scholar
  92. Hubbell, S. P., Wiemer, D. F., and Adejare, A., 1983, An antifungal terpenoid defends a neotropical tree (Hymenaea) against attack by fungus growing ants (Atta), Oecologia (Berlin) 60: 321–327.CrossRefGoogle Scholar
  93. Hugo, W B., 1983, Mode of action of non-antibiotic antimicrobial agents, in: Pharmaceutical Microbiology ( W. B. Hugo and A. D. Russell, eds.), Blackwell, Oxford, pp. 258–264.Google Scholar
  94. Hunt, J., 1982, Studies on the intestinal microflora of the desert locust Schistocerca gregaria (Forsk), Ph.D. thesis, University of Bath, England.Google Scholar
  95. Hunt, J., and Charnley, A. K., 1981, Abundance and distribution of the gut flora of the desert locust, Schistocerca gregaria, J. Invertebr. Pathol. 38: 378–385.CrossRefGoogle Scholar
  96. Ingold, C. T. (ed.), 1971, Fungal Spores: Their Liberation and Dispersal, Oxford University Press, London. Jarosz, J., 1979a, Gut flora of Galleria mellonella suppressing ingested bacteria, J. Invertebr. Pathol. 34: 192–198.Google Scholar
  97. Jarosz, J., 1979b, Yeast-like fungi from greater wax moth larvae (Galleria mellonella) fed antibiotics, J. Invertebr. Pathol. 34: 257–262.CrossRefGoogle Scholar
  98. Jarosz, J., 1983, Streptococcus faecium in the intestine of the greater wax moth, Galleria mellonella, Microbios Lett. 23: 125–128.Google Scholar
  99. Keilin, D., 1920, On a new saccharomycete Monosporella unicuspidata Gen. N. Nom., N. sp., parasitic in the body cavity of a dipterous larva (Dasyhelea obscura Winnertz). Parasitology 12: 83–91.CrossRefGoogle Scholar
  100. Kish, L. P., and Allen, G. E., 1978, The biology and ecology of Nomuraea rileyi and a program of predicting its incidence on Anticarsia gemmatalis in soybean, FI. Agric. Exp. Stn. Bull. 795: 1–47.Google Scholar
  101. Klug, M. J., and Kotarski, S., 1980, Bacteria associated with the gut tract of larval stages of the aquatic cranefly Tipula abdominalis (Diptera; Tipulidae), Appl. Environ. Microbiol. 40: 408–416.PubMedGoogle Scholar
  102. Kodaira, Y., 1961, Biochemical studies on the muscardine fungi in the silkworms, Bombyx mori, J. Fac. Text. Sci. Technol. Shinshu Univ. 29: 1–68.Google Scholar
  103. Kodama, R., and Nakasuji, Y., 1971, Further studies on the pathogenic mechanism of bacterial diseases in gnotobiotic silkworm larvae, IFO Res. Commun. 5: 1–9.Google Scholar
  104. Koike, S., Izuka, T. I., and Mizutani, J., 1979, Determination of caffeic acid in the digestive juice of silkworm larvae and its antibacterial activity against pathogenic Streptococcus faecalis AD-4, Agric. Biol. Chem. 43 (8): 1727–1731.CrossRefGoogle Scholar
  105. Kramm, K. R., and West, D. F., 1982, Termite pathogens: Effects of ingested Metarhizium, Beauveria, and Gliocladium conidia on worker termites (Reticulitermes sp.), J. Invertebr. Pathol. 40: 7–11.CrossRefGoogle Scholar
  106. Kukor, J. J., and Martin, M. M., 1987, Nutritional ecology of fungus feeding arthropods, in: The Nutritional Ecology of Insects, Mites, and Spiders (F Slansky, Jr., and J. G. Rodriguez, eds.), Wiley, New York, pp. 791–814.Google Scholar
  107. Kushner, D. J., and Harvey, G. T., 1962, Antibacterial substances in leaves: Their possible role in insect resistance to disease, J. Insect Pathol. 4: 155–184.Google Scholar
  108. Lacey, M. C., Lacey, L. A., and Roberts, D. W, 1988, Route of invasion of Metarhizium anisopliae in Culex quinquefasciatus, J. Invertebr. Pathol. 52: 108–118.PubMedCrossRefGoogle Scholar
  109. Latge, J. P., Cole, G. T., Horisberger, M., and Prevost, M. C., 1986, Ultrastructure of chemical composition of the ballistospore of Conidiobolus obscurus, Exp. Mycol. 10: 99–113.CrossRefGoogle Scholar
  110. Latge, J. P., Sampedro, L., Brey, P., and Diaquin, M., 1987, Aggressiveness of Conidiobolus obscurus against the pea aphid: Influence of cuticular extracts on ballistospore germination of aggressive and non-aggressive strains, J. Gen. Microbiol. 133: 1987–1997.Google Scholar
  111. Lee, A., 1985, Neglected niches: The microbiol ecology of the gastrointestinal tract, in: Advances in Microbial Ecology, Volume 8 ( K. C. Marshall, ed.), Plenum Press, New York, pp. 115–162.CrossRefGoogle Scholar
  112. Lefebvre, C. L., 1934, Penetration and development of the fungus Beauveria bassiana, in the tissues of the corn borer, Ann. Bot. 48: 441–452.Google Scholar
  113. Lepesme, P., 1938, Recherches sur une aspergillose des Acridiens, Bull. Soc. Hist. Mn. Afr. Nord. 29:372–381. Liljemark, W. F, and Gibbons, R. J., 1973, Suppression of Candida albicans by human oral streptococci in gnotobiotic mice Infect. Immun. 8: 846–849.Google Scholar
  114. Lysenko, 0., 1981, Principles of pathogenesis of insect bacterial diseases as exemplifed by the nonsporeforming bacteria, in: Pathogenesis of Invertebrate Microbial Diseases ( E. W. Davidson, ed.), Allanheld, Osmun, Montclair, N. J., pp. 163–188.Google Scholar
  115. Lysenko, 0., 1985, Non-sporeforming bacteria pathogenic to insects: Incidence and mechanisms, Annu. Rev. Microbiol. 39: 673–695.CrossRefGoogle Scholar
  116. Macko, V, 1981, Inhibitors and stimulants of spore germination and infection structure formation in fungi, in: The Fungal Spore: Morphogenetic Controls ( G. lbrian and H. R. Hohl, eds.), Academic Press, New York, pp. 565–584.Google Scholar
  117. Madelin, M. F.,1963, Diseases caused by hyphomycetous fungi, in: Insect Pathology: An Advanced Treatise (E. A. Steinhaus, ed.), Academic Press, New York, pp. 233–271.Google Scholar
  118. Maksymiuk, B., 1970, Occurrence and nature of antibacterial substances in plants affecting Bacillus thuringiensis and other entomogenous bacteria J. Invertebr. Pathol. 15: 356–371.CrossRefGoogle Scholar
  119. Martin, J. S., Martin, M. M., and Bernays, E. A., 1987, Failure of tannic acid to inhibit digestion or reduce digestibility of plant protein in gut fluids of insect herbivores: implications for theories of plant defense, J. Chem. Ecol. 13: 605–621.CrossRefGoogle Scholar
  120. Martin, M. M., 1979, Biochemical implications of insect mycophagy, Biol. Rev. 54: 1–21.CrossRefGoogle Scholar
  121. Martin, M. M., and Martin, J. S., 1984, Surfactants: Their role in preventing the precipitation of proteins by tannins in insect guts, Oecologia 61: 342–345.CrossRefGoogle Scholar
  122. Martin, M. M., Gieselmann, M. J., and Martin, J. S., 1976, The presence of chitinase in the digestive fluids of ants, Comp. Biochem. Physiol. 53A: 331–332.CrossRefGoogle Scholar
  123. Masera, E., 1957, Metarhizium anisopliae (Metchnikoff) Sorokin, parassita del baco da seta, Ann. Sper. Agrar. 11: 281–298.Google Scholar
  124. Morgan, M. R. J., 1976, Gut carbohydrases in locusts and grasshoppers, Acrida 5:45–58.Google Scholar
  125. Moss, S. T., 1979, Commensalism of the ‘liichomycetes, in: Insect—Fungus Symbiosis (L. R. Batra, ed.), Allanheld, Osmun, Monclair, N.J., pp. 175–227.Google Scholar
  126. Nolte, D. J., Eggers, S. H., and May, I. R., 1973, A locust pheromone: locustol, J. Insect Physiol. 19: 1547–1554.CrossRefGoogle Scholar
  127. Nuss, R., 1982, Die Bedeutugn der Proterosporen: Schlußfolgerungen aus Untersuchungen an Ganoderma (Basidiomycetes), Plant Syst. Evol. 141: 53–79.CrossRefGoogle Scholar
  128. Odelson, D. A., and Breznak, J. A., 1983, Volatile fatty acid production by the hindgut microbiotia of xylophagous termites, Appl. Environ. microbiol. 45: 1602–1613.PubMedGoogle Scholar
  129. Pant, N. C., and Fraenkel, G., 1950, The function of the symbiotic yeasts of 2 insect species Lasioderma serricorne F and Stegobium (Sitodrepa) paniceum L., Science 112: 498.PubMedCrossRefGoogle Scholar
  130. Pekrul, S., and Grula, E. A., 1979, Mode of infection of the corn earworm (Heliothis zea) by Beauveria bassiana as revealed by scanning electron microscopy, J. Invertebr. Pathol. 34: 238–247.CrossRefGoogle Scholar
  131. Phillips, J. E., 1980, Epithelial transport and control in recta of terrestrial insects, in: Insect Biology in the Future, ’VBW 80’ ( M. Locke and D. S. Smith, eds.), Academic Press, New York, pp. 145–177.Google Scholar
  132. Pivnik, H., and Nurmi, E., 1982, The Nurmi concept and its role in the control of salmonellae in poultry, in: Developments in Food Microbiology, Volume I ( R. Davies, ed.), Applied Science Publishers, London, pp. 41–70.Google Scholar
  133. Price, D. W, 1976, Passage of Verticillium albo-atrum through the alimentary canal of the bulb mite, Phytopathology 66: 46–50.CrossRefGoogle Scholar
  134. Ramoska, W. A., and Todd, T., 1985, Variation in efficacy and viability of Beauveria bassiana in the chinch bug (Hemiptera: Lygaeidae) as a result of feeding activity on selected host plants, Environ. Entomol. 14: 146–148.Google Scholar
  135. Ravallec, M., Vey, A., and Riba, G., 1989, Infection of Aedes albopictus by Tolypocladium cylindrosporum, J. Invertebr. Pathol. 53: 7–11.PubMedCrossRefGoogle Scholar
  136. Richards, A. G., and Richards, A. G., 1977, The peritrophic membranes of insects, Annu. Rev. Entomol. 22: 219–240.PubMedCrossRefGoogle Scholar
  137. Roberts, D. W., and Humber, R. A., 1981, Entomogenous fungi, in: Biology of Conidial Fungi, Volume 2 ( G. T. Cole and B. Kendrick, eds.), Academic Press, New York, pp. 201–236.CrossRefGoogle Scholar
  138. Rolfe, R. D., 1984, Role of volatile fatty acids in colonisation resistance to Clostridium difficile, Infect. Immun. 45: 185–191.Google Scholar
  139. Rozsypal, J., 1930, The sugar-beet pest, Bothynoderes punctiventria Germ., and its natural enemies (in Czech.] Sb. Chir. Pohyb. Ustroji C16; 1931, Rev. Appl. Entomol. A19: 427–429 (abstr.).Google Scholar
  140. Rupp, R. A., 1986, The role of the peritrophic membrane of Manduca sexta in insect defense, Ph.D. thesis, Washington State University.Google Scholar
  141. St. Leger, R. J., Butt, T. M., Goettel, M. S., Staples, R. C., and Roberts, D. W, 1988a, Production in vitro of appressoria by the entomopathogenic fungus Metarhizium anisopliae, Exp. Mycol. 13: 274–288.Google Scholar
  142. St. Leger, R. J., Cooper, R. M., and Charnley, A. K., 19886, The effect of metanization of Manduca sexta cuticle on growth and infection by Metarhizium anisopliae, J. Invertebr. Pathol. 52: 459–470.Google Scholar
  143. Savage, D. C., 1969, Microbial interference between indigenous yeast and lactobacilli in the rodent stomach, J. Bacteriol. 98: 1278–1283.PubMedGoogle Scholar
  144. Savage, D. C., 1977, Microbial ecology of the gastrointestinal tract, Annu. Rev. Microbiol. 31: 107–133.PubMedCrossRefGoogle Scholar
  145. Saxena, S. C., and Sarin, K., 1972, Chitinase in the alimentary tract of the lesser mealworm, Alphitobius diaperinus (Panzer) (Coleoptera: Tenebrionidae), Appl. Entomol. Zool. 7: 94.Google Scholar
  146. Schabel, H. G., 1976, Oral infection of Hylobius pales by Metarhizium anisopliae, J. Invertebr. Pathol. 27: 377–383.CrossRefGoogle Scholar
  147. Schaerffenberg, B., 1957, Beauveria bassiana (Vuill.) Link als parasit des kartoffelkaffers (Leptinotarsa decemlineata Say), Anz. Schaedlingsk. 30: 69–74.Google Scholar
  148. Scheline, R. R., 1966, Decarboxylation and demethylation of some phenolic benzoic acid derivatives of rat caecal contents, J. Pharm. Pharmacol. 18: 664–669.PubMedCrossRefGoogle Scholar
  149. Scheline, R. R., 1968, The metabolism of drugs and other organic compounds by the intestinal microflora, Acta Pharmacol. Toricol. 26: 332–342.CrossRefGoogle Scholar
  150. Scheline, R. R., 1973, Metabolism of foreign compounds by gastrointestinal microorganisms, Pharmacol. Rev. 25: 451–523.PubMedGoogle Scholar
  151. Schildknecht, H., 1971, Evolutionary peaks in the defensive chemistry of insects, Endeavour 30: 136–232.PubMedCrossRefGoogle Scholar
  152. Schönbeck, F., and Grunewaldt-Stöcker, G., 1986, Preformed antimicrobial compounds in relation to disease resistance, in: Natural Antimicrobial Systems, FEMS Symposium No. 35 ( G. W. Gould, M. E. Rhodes-Roberts, A. K. Charnley, R. M. Cooper and R. G. Board, eds.), Bath University Press, England, pp. 176–190.Google Scholar
  153. Schroth, M. N., and Hancock, J. G., 1982, Disease suppressive soil and root colonising bacteria, Science 216: 1376–1381.PubMedCrossRefGoogle Scholar
  154. Singleton, V. L., 1981, Phenolic substances as food toxicants, Adv. Food Res. 27: 149–242.CrossRefGoogle Scholar
  155. Smirnov, O. V, 1978, Interrelationships between entomopathogens in the same insect, Entomol. Obozr. 57 (3): 473–476.Google Scholar
  156. Smith, R. J., and Grula, E. A., 1982, Toxic components on the larval surface of the corn earworm (Heliothis zea) and their effects on germination and growth of Beauveria bassiana, J. Invertebr. Pathol. 39: 15–22.CrossRefGoogle Scholar
  157. Söderhall, K., and Ajaxon, R. A., 1982, Effect of quinones and melanin on mycelial growth of Aphanomyces spp. and extracellular protease of Aphanomyces astaci, a parasite on crayfish, J. Invertebr. Pathol. 39: 105–109.CrossRefGoogle Scholar
  158. Soleim, H. A., and Scheline, R. R., 1972, Metabolism of xenobiotics by strains of intestinal bacteria, Acta Pharmacol. Toxicol. 31: 471–480.CrossRefGoogle Scholar
  159. Southwood, T. R. E., 1972, The insect/plant relationship—An evolutionary perspective, in: Insect/Plant Relationships, Symposia of the Royal Society of London, No. 6, Blackwell, Oxford, pp. 3–30.Google Scholar
  160. Stohler, H., 1961, The peritrophic membrane of blood sucking Diptera in relation to their role as vectors of blood parasites, Acta Trop. 18: 263–266.Google Scholar
  161. Sussman, A. S., 1952, Studies of an insect mycosis. V. Color changes accompanying parasitism in Platysamia cecropia, Ann. Entomol. Soc. Am. 45: 223–245.Google Scholar
  162. Sweeney, A. W., 1975, The mode of infection of the insect pathogenic fungus Culicinomyces in larvae of the mosquito Culex fatigans, Aust. J. Zool. 23: 49–57.CrossRefGoogle Scholar
  163. Sweeney, A. W, 1979, Infection of mosquito larvae by Culicinomyces sp. through anal papillae, J. Invertebr. Pathol. 33: 249–251.CrossRefGoogle Scholar
  164. Sweeney,A. W, 1981, Fungal pathogens of mosquito larvae, in: Pathogenesis of Invertebrate Microbial Diseases (E. W. Davidson, ed.), Allanheld, Osmun, Montclair, N.J., pp. 403–424.Google Scholar
  165. Sweeney, A. W, Inman, A. O., Bland, C. E., and Wright, R. G., 1983, The fine structure of Culicinomyces clavisporus invading mosquito larvae, J. Invertebr. Pathol. 42: 224–243.PubMedCrossRefGoogle Scholar
  166. Tannock, G. W., 1984, Control of gastrointestinal pathogens by normal flora, in: Microbial Ecology: Current Perspectives in Microbial Ecology ( M. J. Klug and C. A. Reddy, eds.), American Society for Microbiology, Washington, D.C., pp. 374–382.Google Scholar
  167. Terra, W. R., Ferreira, C., and De Bianchi, A. G., 1979, Distribution of enzymes among the endo-and ectoperitrophic spaces and midgut cells of Rhynchosciara and its physiological significance, J. Insect Physiol 25: 487–494.CrossRefGoogle Scholar
  168. Tobe, S. S., and Pratt, G. E., 1975, Corpus allatum activity in vitro during ovarian maturation in the desert locust, Schistocerca gregaria, J. Exp. Biol. 62:611–627.Google Scholar
  169. Toumanoff, C., 1931, Actions des champignons entomophytes sur les abeilles, Ann. Parasitol. Hum. Comp. 9: 462–482.Google Scholar
  170. Ulrich, R. G., Buthala, D. A., and Klug, M. J., 1981, Microbiotia associated with the gastrointestinal tract of the common house cricket, Acheta domestica, Appl. Environ. Microbiol. 42: 246–254.Google Scholar
  171. Vandenberg, J. D., and Stephens, W. P., 1983, Pathogenesis of chalkbrood in the alfalfa leafcutting bee, Megachile rotundata, Apidologie 14 (4): 333–341.CrossRefGoogle Scholar
  172. Van der Waaij, D., 1982, Gut resistance to colonization: Clinical usefulness of selective use of orally administered antimicrobial and antifungal drugs, in: Infections in Cancer Patients ( J. Klastersky, ed.), Raven Press, New York, pp. 73–85.Google Scholar
  173. Van der Waaij, D., Berghuis-de Vries, J. M., and Lekkerkerk-van der Wees, J. E. C., 1971, Colonization resistance of the digestive tract in conventional and antibiotic-treated mice, J. Hyg. 69: 405–413.PubMedCrossRefGoogle Scholar
  174. Veen, K. H., 1966, Oral infection of second instar nymphs of Schistocerca gregaria by Metarhizium anisopliae, J. Invertebr. Pathol. 8: 254–256.PubMedCrossRefGoogle Scholar
  175. Veen, K. H., 1968, Recherches sur la maladie, due a Metarhizium anisopliae chez le criquet pelerin, Meded Landbouwhoquesch. Wageningen 68.Google Scholar
  176. Veivers, P. C., O’Briend, R. W, and Slaytor, M., 1980, The redox state of the gut of termites, J. Insect Physiol. 26: 75–77.CrossRefGoogle Scholar
  177. Veivers, P. C., O’Briend, R. W, and Slaytor, M., 1982, Role of bacteria in maintaining the redox potential in the hindgut of termites and preventing entry of foreign bacteria, J. Insect Physiol. 28: 947–951.CrossRefGoogle Scholar
  178. Walden, W. C., and Hentges, D. J., 1975, Differential effects of oxygen and oxidation reduction potential on the multiplication of three species of anaerobic intestinal bacteria, Appl. Microbial. 30: 781–785.Google Scholar
  179. Walker, J. C., and Stahmann, M. A., 1955, Chemical nature and disease resistance in plants, Annu. Rev. Plant Physiol. 6: 351–366.CrossRefGoogle Scholar
  180. Waterhouse, D. F., 1940, Studies on the physiology and toxicology of blowflies. 5. The hydrogen ion concentration in the alimentary canal, Pamphl. Counc. Sci. Ind. Res. Aust. 102: 7–27.Google Scholar
  181. Waterhouse, D. F., and McKellar, J. W, 1961, The distribution of chitinase activity in the body of the American cockroach, J. Insect Physiol. 6: 185–195.CrossRefGoogle Scholar
  182. Weber, N. A., 1966, Fungus growing ants, Science 153: 587–604.PubMedCrossRefGoogle Scholar
  183. Wilkinson, C. F, 1986, Xenobiotic conjugation in insects, in: Xenobiotic Conjugation Chemistry ( G. D. Paulson, J. Caldwell, D. H. Hutson, and J. J. Menn, eds.), American Chemical Society, Washington, D.C., pp. 48–61.CrossRefGoogle Scholar
  184. Williams, M. C., and Lichtwardt, R. W, 1972, Infection of Aedes aegypti by axenic cultures of the fungal genus Smittium (Trichomycetes), Am. J. Bot. 59: 189–193.CrossRefGoogle Scholar
  185. Yendol, W. G., and Paschke, J.D., 1965, Pathology of an Entomophthora infection in the eastern subterranean termite Reticulitermes flavipes (Kollar), J. Invertebr. Pathol. 7: 414–422.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1991

Authors and Affiliations

  • R. J. Dillon
    • 1
  • A. K. Charnley
    • 1
  1. 1.School of Biological SciencesUniversity of BathBath, AvonEngland

Personalised recommendations