Skip to main content

Molecular Approaches to the Analysis of Pathogenicity Genes from Fungi Causing Plant Disease

  • Chapter

Abstract

Fungi are relatively simple eukaryotes; most reproduce rapidly and are easy to grow. Fungi in general have small genomes; during vegetative growth many are haploid and some are uninucleate. In numerous cases their life cycle can be completed in the laboratory and the products of meiosis analyzed individually, facilitating classical genetics. The fungi which are responsible for plant diseases are interesting biologically and important economically. In sum, plant pathogenic fungi would appear to be excellent subjects for genetic and biochemical analysis, and attractive organisms for the application of molecular approaches to dissecting the phenomenon of pathogenesis. However, there is a disappointingly short list of examples for which we understand, even in part, the molecular basis for fungal—plant interactions. One reason is the great diversity of fungi and the many routes by which they have achieved their successes as pathogens. As a result of this diversity, no fungus has emerged as an overall model for the analysis of pathogenicity toward plants, as the yeasts Saccharomyces cerevisiae and Schizosaccharomyces pombe or the filamentous fungi Neurospora crassa and Aspergillus nidulans have for other areas of cell and molecular biology. However, methods in recombinant DNA technology are making significant contributions to the study of plant diseases caused by fungi, and progress in several host—pathogen systems has been rapid in recent years. The goal of this chapter is to consider recent progress and prospects for future developments in understanding the genes which fungi employ in inciting plant disease.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Agrios, G. N., 1988, Plant Pathology, 3rd ed., Academic Press, New York, pp. 71–72.

    Google Scholar 

  • Aist, J. R., and Williams P. H., 1971, The cytology and kinetics of cabbage root hair penetration by Plasmodiophora brassicae, Can. J. Bot., 49: 2023–2034.

    Google Scholar 

  • Akins, R.A., and Lambowitz, A.M., 1985, General method for cloning Neurospora crassa nuclear genes by complementation, Mol. Cell. Biol. 5: 2272–2278.

    Google Scholar 

  • Ballance, D. J., Buxton, F P., and Turner, G., 1983, Transformation of Aspergillus nidulans by the orotidine-5’-phosphate decarboxylase gene of Neurospora crossa, Biochem. Biophys. Res. Commun, 112: 284–289.

    Google Scholar 

  • Banuett, E, and Herskowitz, I., 1988, Ustilago maydis, smut of maize, in: Genetics of Plant Pathogenic Fungi( G. S. Sidhu, ed.), Academic Press, New York, pp. 427–455.

    Google Scholar 

  • Beach, D., and Nurse, P, 1981, High-frequency transformation of the fission yeast Schizosaccharomyces pombe, Nature 290: 140–142.

    Article  PubMed  CAS  Google Scholar 

  • Botstein, D., and Fink, G. R., 1988, Yeast: An experimental organism for modern biology, Science 240: 1439–1443.

    Google Scholar 

  • Botstein, D., White, R. L., Skolnick, M., and Davis, R. W., 1980, Construction of a genetic linkage map in man Using restriction fragment length polymorphisms, Am. J. Hum. Genet. 32: 314–331.

    Google Scholar 

  • Case, M. E., Schweizer, M., Kushner, S. R., and Giles, N. H., 1979, Efficient transformation of Neurospora crassa by utilizing hybrid plasmid DNA, Proc. Natl. Acad. Sci. USA 76: 5259–5263.

    Google Scholar 

  • Chen, C. M., Gritzali, M., and Stafford, D. W., 1987, Nucleotide sequence and deduced primary structure of cellobiohydrolase II of Trichoderma reesei, Bio/Technology8: 274–278.

    Article  CAS  Google Scholar 

  • Collmer, A., and Keen, N. T., 1986, The role of pectic enzymes in plant pathogenesis, Annu. Rev. Phytopathol. 24: 383–409.

    Google Scholar 

  • Crawford, M. S., and Kolattukudy, P. E., 1987, Pectate lyase from Fusarium solani f. sp.pisi: Purification, characterization, in vitro translation of the mRNA, and involvement in pathogenicity, Arch. Biochem. Biophys. 258: 196–205.

    Google Scholar 

  • Day, A. W, and Garber, E. D., 1988, Ustilago violacea, anther smut of the Caryophyllaceae, in: Genetics of Plant Pathogenic Fungi( G. S. Sidhu, ed.), Academic Press, New York, pp. 457–482.

    Google Scholar 

  • Dean, R. A., and Timberlake, W. E., 1989a, Production of cell wall-degrading enzymes by Aspergillus nidulans: A model system for fungal pathogenesis of plants, Plant Cell 1: 265–273.

    Google Scholar 

  • Dean, R. A., and Timberlake, W. E., 1989b, Regulation of the Aspergillus nidulans pectate lyase gene (pelA), Plant Cell 1: 275–284.

    PubMed  CAS  Google Scholar 

  • de Boer, H. A., Zhang, Y. Z., Collins, C., and Reddy, C. A., 1987, Analysis of nucleotide sequences of two ligninase cDNAs from a white-rot filamentous fungus, Phanerochaete chrysosporium, Gene 60: 93–102.

    Google Scholar 

  • Ellingboe, A. H., 1976, Genetics of host—parasite interactions, in: Physiological Plant Pathology( R. Heitefuss and P. H. Williams, eds.), Springer-Verlag, Berlin, pp. 761–778.

    Chapter  Google Scholar 

  • Ettinger, W. E, Thukral, S. K., and Kolattukudy, P. E., 1987, Structure of cutinase gene, cDNA, and the derived amino acid sequence from phytopathogenic fungi, Biochemistry 26: 7883–7892.

    Article  CAS  Google Scholar 

  • Faugeron, G., Goyon, C., and Grégoire, A., 1989, Stable allele replacement and unstable non-homologous integration events during transformation of Ascobolus immersus, Gene 76: 109–119.

    Article  PubMed  CAS  Google Scholar 

  • Flor, H. H., 1971, Current status of the gene-for-gene concept, Annu. Rev. Phytopathol 9: 275–296.

    Google Scholar 

  • Fungal Genetics Stock Center, 1988, Catalogue of strains, Fungal Genetics Newsletter Suppl. 35.

    Google Scholar 

  • Gabriel, D. W., Loschke, D. C., and Rolfe, B. G., 1988, Gene-for-gene recognition: The ion channel defense model, in: Molecular Genetics of Plant— Microbe Interactions ( R. Palacios and D. P. S. Verma, eds.), APS Press, St. Paul, pp. 3–14.

    Google Scholar 

  • Giasson, L., Specht, C. A., Milgrim, C., Novotny, C. P., and Ullrich, R. C., 1989, Cloning and comparison of Ars mating-type alleles of the Basidiomycete Schizophyllum commune, Mol. Gen. Genet. 218: 72–77.

    Google Scholar 

  • Glass, N. L., Vollmer, S. J., Staben, C., Grotelueschen, J., Metzenberg, R. L., and Yanofsky, C., 1988, DNAs of the two mating-type alleles of Neurospora crassa are highly dissimilar, Science 241: 570–573.

    Article  PubMed  CAS  Google Scholar 

  • Herskowitz, I., 1987, A master regulatory locus that determines cell specialization in yeast, Harvey Lect. 81: 67–92.

    Google Scholar 

  • Herskowitz, I., 1988, The life cycle of the budding yeast, Saccharomyces cerevisiae, Microbial. Rev. 52: 536–553.

    Google Scholar 

  • Hinnen, A., Hicks, J. B., and Fink, G. R., 1978, Transformation of yeast, Proc. Natl. Acad. Sci. USA 75: 1929–1933.

    Google Scholar 

  • Holden, D., Wang, J., and Leong, S. A., 1985, Analysis of heat shock genes from Ustilago maydis, Abstract, First International Congress on Plant Molecular Biology, Savannah, Georgia.

    Google Scholar 

  • Hulbert, S. H., and Michelmore, R. W, 1988, DNA restriction fragment length polymorphism and somatic variation in the lettuce downy mildew fungus, Bremia lactucae, Mol. Plant—Microbe Interact 1: 17–24.

    Google Scholar 

  • Hulbert, S. H., Ilott, T. W, Legg, E. J., Lincoln, S. E., Lander, E. S., and Michelmore, R. W, 1988, Genetic analysis of the fungus, Bremia lactucae, using restriction fragment length polymorphisms, Genetics 120: 947–958.

    Google Scholar 

  • Huynh, T. V. Young, R. A., and Davis, R. W, 1985, Constructing and screening cDNA libraries in Xgtl0 and Xgt11, in: DNA Cloning, Volume I (D. M. Glover, ed.), IRL Press, Washington, D.C., pp. 49–78.

    Google Scholar 

  • Kinnaird, J. H., Keighren, M. A., Kinsey, J. A., Eaton, M., and Fincham, J. R. S., 1982, Cloning of the am (glutamate dehydrogenase) gene of Neurospora crassa through the use of a synthetic DNA probe, Gene 20: 387–396.

    Article  PubMed  CAS  Google Scholar 

  • Kistler, H. C., and VanEtten, H. D., 1984, Three non-allelic genes for pisatin demethylation in the fungus Nectria haematococca, J. Gen. Microbiol. 130: 2595–2603.

    Google Scholar 

  • Knowles, J., Lehtovaara, P., Penttilä, M., Teeri, T., Harkki, A., and Salovuori, I., 1987, The cellulase genes of aichoderma, Antonie van Leeuwenhoek J. Microbiol. Serol. 53: 335–341.

    Google Scholar 

  • Kolattukudy, P. E., and Crawford, M. S., 1987, The role of polymer degrading enzymes in fungal pathogenesis, in: Molecular Determinants of Plant Diseases( S. Nishimura, C. P. Vance, and N. Doke, eds.), Springer-Verlag, Berlin, pp. 75–96.

    Google Scholar 

  • Köller, W, Allan, C. R., and Kolattukudy, P. E., 1982, Role of cutinase and cell wall degrading enzymes in infection of Pisum sativum by Fusarium solani f. sp. pisi, Physiol. Plant Pathol. 20: 47–60.

    Google Scholar 

  • Kronstad, J. W., and Leong, S. A., 1989, Isolation of two alleles of the b locus of Ustilago maydis, Proc. Natl. Acad. Sci. USA 86: 978–982.

    Google Scholar 

  • Lim, S. M., and Hooker, A. L., 1971, Southern corn leaf blight: Genetic control of pathogenicity and toxin production in race T and race O of Cochliobolus heterostrophus, Genetics 69: 115–117.

    Google Scholar 

  • Matthews, D. E., and VanEtten, H. D., 1983, Detoxification of the phytoalexin pisatin by a fungal cytochrome P-450, Arch. Biochem. Biophys. 224: 494–505.

    Google Scholar 

  • Metzenberg, R. L., and Grotelueschen, J., 1987, A restriction polymorphism map of Neurospora crassa: More data, Fungal Genet. Newsl. 34: 39–44.

    Google Scholar 

  • Metzenberg, R. L., and Grotelueschen, J., 1988, Restriction polymorphism maps of Neurospora crassa: Updates, Fungal Genet. Newsl. 35: 30–35.

    Google Scholar 

  • Metzenberg, R. L., Stevens, J. N., Selker, E. U., and Morzycka-Wroblewska, E., 1985, Identification and chromosomal distribution of 5S rRNA genes in Neurospora crassa, Proc. Nall. Acad. Sci. USA 82: 2067–2071.

    Google Scholar 

  • Michelmore, R. W, Norwood, J. M., Ingram, D. S., Crute, I. R., and Nicholson, P, 1984, The inheritance of virulence in Bremia lactucae to match resistance factors 3, 4, 5, 6, 8, 9, 10, and 11 in lettuce ( Lactuca sativa ), Plant Pathol. 33: 301–315.

    Google Scholar 

  • Mierendorf, R. C., Percy, C., and Young, R. A., 1987, Gene isolation by screening Xgtl l libraries with antibodies, Methods Enzymol. 152: 458–469.

    Article  PubMed  CAS  Google Scholar 

  • Norwood, J. M., Michelmore, R. W, Crute, I. R., and Ingram, D. S., 1983, The inheritance of specific virulence in Bremia lactucae (downy mildew) to match resistance factors 1, 2, 4, 6, and 11 in Lactuca saliva (lettuce), Plant Pathol. 32: 177–186.

    Google Scholar 

  • Oliver, R. P., Roberts, I. N., McHale, M., Coddington, A., Talbot, N., Lewis, B., Kenyon, L., Turner, J., and Hamouri, B. E., 1988, Molecular approaches for the study of the pathogenicity of Fulvia fulva, in: Molecular Genetics of Plant—Microbe Interactions ( R. Palacios and D. P. S. Verma, eds.), APS Press, St. Paul, pp. 263–264.

    Google Scholar 

  • Paietta, J. V., Akins, R. A., Lambowitz, A. M., and Marzluf, G. A., 1987, Molecular cloning and characterization of the cys-3 regulatory gene of Neurospora crassa, Mol. Cell. Biol. 8: 2506–2511.

    Google Scholar 

  • Panaccione, D. G., McKiernan, M., and Hanau, R. M., 1988, Colletotrichum graminicola transformed with homologous and heterologous benomyl-resistance genes retains expected pathogenicity to corn, Mol. Plant—Microbe Interact. 1: 113–120.

    Google Scholar 

  • Parsons, K. A., Chumley, F. G., and Valent, B., 1987, Genetic transformation of the fungal pathogen responsible for rice blast disease, Proc. Natl. Acad. Sci. USA 84: 4161–4165.

    Google Scholar 

  • Penttilä, M., Lehtovaara, P, Nevalainen, H., Bhikhabhai, R., and Knowles, J., 1986, Homology between cellulose genes ofhichoderma reesei: Complete nucleotide sequence of the endoglucanase I gene, Gene 45: 253–263.

    Google Scholar 

  • Podila, G. K., Dickman, M. B., and Kolattukudy, P. E., 1988, Transcriptional activation of a cutinase gene in isolated fungal nuclei by plant cutin monomers, Science 242: 922–925.

    Article  CAS  Google Scholar 

  • Rambosek, J., and Leach, J., 1987, Recombinant DNA in filamentous fungi: Progress and prospects, CRC Crit. Rev. Biotechnol. 6: 357–393.

    Google Scholar 

  • Rodriguez, R. J., and Yoder, O. C., 1987, Selectable markers for transformation of the fungal plant pathogen Glomerella cingulata f. sp. phaseoli ( Colletotrichum lindemuthianum ), Gene 54: 73–81.

    Google Scholar 

  • Rose, M. D., 1987, Isolation of genes by complementation in yeast, Methods Enzymol. 152: 481–504.

    Article  PubMed  CAS  Google Scholar 

  • Scheffer, R. P, Nelson, R. R., and Ullstrup, A. J., 1967, Inheritance of toxin production and pathogenicity in Cochliobolus carbonum and Cochliobolus victoriae, Phytopathology 57: 1288–1291.

    Google Scholar 

  • Shoemaker, S., Schweikart, V., Ladner, M., Gelfand, D., Kwok, S., Myambo, K., and Innis, M., 1983, Molecular cloning of exocellobiohydrolase I derived from 7Yichoderma reesei strain L27, BiolTechnology 1:691. Sidhu, G. S., (ed.), 1988, Genetics of Plant Pathogenic Fungi, Academic Press, New York.

    Google Scholar 

  • Soliday, C. L., Flurkey, W. H., Okita, T. W, and Kolattukudy, P. E., 1984, Cloning and structure determination of cDNA for cutinase, an enzyme involved in fungal penetration of plants, Proc. Natl. Acad. Sci. USA 81: 3939–3943.

    Google Scholar 

  • Spoerel, N. A., and Kafatos, F. C., 1987, Isolation of full-length genes: Walking the chromosome, Methods Enzymol. 152: 598–603.

    Google Scholar 

  • Stinchcomb, D. T., Thomas, M., Kelly, J., Selker, E., and Davis, R. W., 1980, Eukaryotic DNA segments capable of autonomous replication in yeast, Proc. Natl. Acad. Sci. USA 77:4559–4563

    Google Scholar 

  • Teeri, T., Salovuori, I., and Knowles, J., 1983, The molecular cloning of the major cellulase gene from Trichoderma reesei, Bio/Technology 1: 696.

    Article  CAS  Google Scholar 

  • Teeri, T., Lehtovaara, P., Kauppinen, S., Salovuori, I., and Knowles, J., 1987, Homologous domains in Trichoderma reesei cellulolytic enzymes: Gene sequence and expression of cellobiohydrolase II, Gene 51: 43–52.

    Google Scholar 

  • Tegtmeier, K. J., and VanEtten, H. D., 1982, The role of pisatin tolerance and degradation in the virulence of Nectria haematococca on peas: A genetic analysis, Phytopathology 72: 608–612.

    Google Scholar 

  • Tien, M.:1987, Properties of ligninase from Phanerochaete chrysosporium and their possible applications, CRC Crit. Rev. Microbiol. 15: 141–168.

    Google Scholar 

  • Tien, M., and Tu, C.-P. D., 1987, Cloning and sequencing of a cDNA for a ligninase from Phanerochaete chrysosporium, Nature 326: 520–523.

    Article  PubMed  CAS  Google Scholar 

  • Tilburn, J., Scazzocchio, C., Taylor, G. C., Zabicky-Zissman, J. H., Lockington, R. A., and Davies, R. W, 1983, Transformation by integration in Aspergillus nidulans, Gene 26: 205–221.

    Article  PubMed  CAS  Google Scholar 

  • Tsukuda, T., Carleton, S., Fotheringham, S., and Holloman, W. K., 1988, Isolation and characterization of an autonomously replicating sequence from Ustilago maydis, Mol. Cell. Biol. 8: 3703–3709.

    Google Scholar 

  • burgeon, B. G., MacRae, W. D., Garber, R. C., Fink, G. R., and Yoder, O. C., 1986, A cloned tryptophan-synthesis gene from the ascomycete Cochliobolus heterostrophus functions in Escherichia coli, yeast and Aspergillus nidulans, Gene 42: 79–88.

    Article  Google Scholar 

  • Turgeon, B. G., Garber, R. C., and Yoder, O. C., 1987, Development of a fungal transformation system based on selection of sequences with promoter activity, Mol. Cell. Biol. 7: 3297–3305.

    Google Scholar 

  • Burgeon, B. G., Ciuffetti, L., Schäfer, W., and Yoder, O. C., 1988, Isolation of the mating type locus of Cochliobolus heterostrophus, in: Molecular Genetics of Plant—Microbe Interactions( R. Palacios and D. P. S. Verma eds.), APS Press, St. Paul, pp. 265–266.

    Google Scholar 

  • van Arsdell, J. N., Kwok, S., Schweikart, V L., Ladner, M. B., Gelfand, D. H., and Innis, M., 1987, Cloning, characterization, and expression in Saccharomyces cerevisiae of endoglucanase I from Thichoderma reesei, Bio/Technology 5: 60–64.

    Article  Google Scholar 

  • VanEtten, H. D., and Kistler, H. C., 1988, Nectria haematococca, in: Genetics of Plant Pathogenic Fungi( G. S. Sidhu, ed.), Academic Press, New York, pp. 189–206.

    Google Scholar 

  • VanEtten, H. D., and Pueppke, S. G., 1976, Isoflavonoid phytoalexins, in: Biochemical Aspects of Plant—Parasitic

    Google Scholar 

  • Relationships (J. Friend and D. R. Threlfall, eds.), Academic Press, New York, pp. 239–289.

    Google Scholar 

  • VanEtten, II. D., and Pueppke, S. G., and Kelsey, T. C., 1975, 3,6a-Dihydroxy-8,9-methylenedioxypterocarpan as a metabolite of pisatin produced by Fusarium solani f. sp. pisi, Phytochemistry 14: 1103–1105.

    Google Scholar 

  • Wallace, R. B., and Miyada, C. G., 1987, Oligonucleotide probes for the screening of recombinant DNA libraries, Methods Enzymol. 152: 432–442.

    Article  PubMed  CAS  Google Scholar 

  • Walther, I., Kalin, M., Reiser, J., Suter, E, Fritsche, B., Saloheimo, M., Leisola, M., Teeri, T., Knowles, J. K. C., and Fietcher, A., 1988, Molecular analysis of a Phanerochaete chrysosporium lignin peroxidase gene, Gene 70: 127–137.

    Article  PubMed  CAS  Google Scholar 

  • Walton, J. D., 1987, Two enzymes involved in biosynthesis of the host-selective phytotoxin HC-toxin, Proc. Nat!. Acad. Sci. USA 84: 8444–8447.

    Google Scholar 

  • Wang, J., Holden, D. W, and Leong, S., 1988, Gene transfer system for Ustilago maydis based on resistance to hygromycin B, Proc. Natl. Acad. Sci. USA 85: 865–869.

    Google Scholar 

  • Weltring, K.-M., lbrgeon, B. G., Yoder, O. C., and VanEtten, H. D., 1988, Isolation of a phytoalexin-detoxification gene from the plant pathogenic fungus Nectria haematococca by detecting its expression in Aspergillus nidulans, Gene 68: 335–344.

    Article  PubMed  CAS  Google Scholar 

  • Woloshuk, C. P., and Kolattukudy, P. E., 1986, Mechanism by which contact with plant cuticle triggers cutinase gene expression in the spores of Fusarium solani f. sp. pisi, Proc. Natl. Acad. Sci. USA 83: 1704–1708.

    Google Scholar 

  • Wood, W. I., 1987, Gene cloning based on long oligonucleotide probes, Methods Enzymol. 152: 443–447.

    Article  PubMed  CAS  Google Scholar 

  • Yelton, M. M., Hamer, J. E., and Timberlake, W E., 1984, Transformation of Aspergillus nidulans by using a trpC plasmid, Proc. Natl. Acad. Sci. USA 81: 1470–1474.

    Google Scholar 

  • Yelton, M. M., Timberlake, W. E., and van den Hondel, C. A. M. J. J., 1985, A cosmid for selecting genes by complementation in Aspergillus nidulans: Selection of the developmentally regulated yA locus, Proc. Natl. Acad. Sci. USA 82: 834–838.

    Google Scholar 

  • Yoder, O. C., 1980, Toxins in pathogenesis, Annu. Rev. Phytopathol. 18: 103–129.

    Google Scholar 

  • Yoder, O. C., and Gracen, V. E., 1975, Segregation of pathogenicity types and host-specific toxin production in progenies of crosses between races T and O of Helminthosporium maydis (Cochliobolus heterostrophus), Phytopathology 65:273–276

    Google Scholar 

  • Yoder, O. C., Weltring, K., lbrgeon, B. G., Garber, R. C., and VanEtten, H. D.,1986, Technology for molecular cloning of fungal virulence genes, in: Biology and Molecular Biology of Plant—Pathogen Interactions(J. Bailey, ed.), Springer-Verlag, Berlin, pp. 371–384.

    Google Scholar 

  • Young, N. D., Zamir, D., Ganal M. W, and Tanksley, S. D., 1988, Use of isogenic lines and simultaneous probing to identify DNA markers tightly linked to the Tm-2a gene in tomato, Genetics 120: 579–585.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1991 Springer Science+Business Media New York

About this chapter

Cite this chapter

Garber, R.C. (1991). Molecular Approaches to the Analysis of Pathogenicity Genes from Fungi Causing Plant Disease. In: Cole, G.T., Hoch, H.C. (eds) The Fungal Spore and Disease Initiation in Plants and Animals. Springer, Boston, MA. https://doi.org/10.1007/978-1-4899-2635-7_22

Download citation

  • DOI: https://doi.org/10.1007/978-1-4899-2635-7_22

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4899-2637-1

  • Online ISBN: 978-1-4899-2635-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics