## Abstract

The idea of where subscripts s and A refer to specimen and pure element A, respectively, μ is the mass absorption coefficient, with subscript referring to characteristic line and superscript the absorber. where μ

*φ*(*ρz*) equations and the depth distribution of x-ray intensities as a basis for the quantitative correction of measured x-ray intensities goes back to the origins of electron probe microanalysis.*φ*(*ρz*) is the characteristic x-ray intensity generated in a thin layer d*ρz*at depth*ρz*in the specimen relative to intensity generated in an identical layer d*ρz*, isolated in space. Castaing [1] first suggested that you could write the measured*k*-ratio in terms of*φ*(*ρz*) equations as:(1)

*ρz*represents the mass depth in the specimen. Ψ is the x-ray take-off angle. Castaing (with Descamps) [2] also demonstrated that is was possible to measure*φ*(*ρz*) curves using a sandwich sample technique (fig. 1). The advantage of the*φ*(*ρz*) equation is its relative simplicity in concept and the fact that the major corrections of absorption, atomic number and characteristic fluorescence can be explicitly written. The equation for the fraction of x rays which escape from the specimen,*f*(χ), the absorption correction is(2)

_{A}^{s}is the mass absorption coefficient for the characteristic x rays of element A in the specimen. The combined factor μ cscΨ is the so-called absorption parameter χ. The numerator is simply the number of x rays which escape from the specimen while the denominator represents the total number of x rays generated in the specimen.### Keywords

Radium## Preview

Unable to display preview. Download preview PDF.

### References

- [1]Castaing, R. (1960), Advances in Electronics and Electron Physics, Vol. XIII, Marton, L., ed., Academic Press, New York, 317.Google Scholar
- [2]Castaing, R. and Descamps, J. (1955), J. Phys. et Radium
**16**, 304.CrossRefGoogle Scholar - [3]Brown, J. D., Ph.D. (1966), Thesis, University of Maryland, College Park, MD, 167.Google Scholar
- [4]Castaing, R. and Henoc J. (1966), X-Ray Optics and Microanalysis, Castaing, R., Descamps, P. and Philibert, J., eds., Hermann, Paris, 120.Google Scholar
- [5]Brown, J. D. and Parobek, L. (1972), Proc. 6th Int. Conf. X-Ray Optics and Microanalysis, Shinoda, G., Kohra, K., and Ichinokawa, T., eds., U. of Tokyo Press, Tokyo, 163.Google Scholar
- [6]Buchner, A. R. and Pitsch, W. (1971), Z. Metallkunde
**62**, 393.Google Scholar - [7]Buchner, A. R. and Pitsch, W. (1972), Z. Metallkunde
**63**, 398.Google Scholar - [8]Rehbach, W. and Karduck, P. (1987), Proc. 11th Int. Conf. X-Ray Optics and Microanalysis, Brown, J. D. and Packwood, R. H., eds., UWO Graphics Serv., London, Ontario, Canada, 244.Google Scholar
- [9]Criss, J. W. (1968), NBS Spec. Publ.
**298**, 53.Google Scholar - [10]Wittry, D. B., (1957), Ph.D. Thesis, California Institute of Technology.Google Scholar
- [11]Kyser, D. F. (1972), Proc. 6th Int. Conf. X-Ray Optics and Microanalysis, Shinoda, G., Kohra, K., and Ichinokawa, T., eds., 147.Google Scholar
- [12]Parobek, L. and Brown, J. D. (1978), X-Ray Spectr.
**7**, 26.CrossRefGoogle Scholar - [13]Brown, J. D. and Robinson, W. H. (1979), Microbeam Analysis, 238.Google Scholar
- [14]Packwood, R. H. and Brown, J. D. (1981), X-Ray Spectr.
**10**, 138.CrossRefGoogle Scholar - [15]Brown, J. D. and Packwood, R. H. (1982), X-Ray Spectr.
**11**, 187.CrossRefGoogle Scholar - [16]Packwood, R. H. and Brown, J. D. (1980), Microbeam Analysis, 45.Google Scholar
- [17]Bastin, G. F. and Heijligers, H. J. M. (1984 and 1985 ), Internal Reports, Univ. of Technology, Eindhoven, ISBN, 90–6819–002–4 and 90–6819–006–7.Google Scholar
- [18]Bastin, G. F., Heijligers, H. J. M., and van Loo, F. J. J. (1984), Scanning
**6**, 58.CrossRefGoogle Scholar - [19]Bastin, G. F., Heijligers, H. J. M. (1986), X-Ray Spectr.
**15**, 143.CrossRefGoogle Scholar - [20]Tirira Saa, J. H., Del Giorgio, M. A., and Riveros, J. A. (1987), X-Ray Spectr.
**16**, 255.CrossRefGoogle Scholar

## Copyright information

© Springer Science+Business Media New York 1991