Amalgamation in Pseudocomplemented Semilattices

  • Jürg Schmid


In this paper, we compare amalgamation properties of certain natural subclasses of the variety PCS of all pseudocomplemented semilattices (PCS’s, for short) with those of analogous subclasses of the variety DPCL of distributive pseudocomplemented lattices (DPCL’s, for short).


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [GL]
    Grätzer G., Lakser H., The structure of pseudocomplemented distributive lattices. II: Congruence extension and amalgamation. Trans. Amer. Math. Soc. 156 (1971), 343–358.MathSciNetzbMATHGoogle Scholar
  2. [L]
    Lee, K.B., Equational classes of distributive pseudocomplemented lattices. Canad. Math. J. 22 (1970), 881–891.zbMATHCrossRefGoogle Scholar
  3. [S]
    Sankappanavar, H.P., Remarks on subdirectly irreducible pseudocomplemented semilattices and distributive pseudocomplemented lattices. Math. Japonica 25 (1980), 519–521.MathSciNetzbMATHGoogle Scholar
  4. [Sch]
    Schmid, J., Lee classes and sentences for pseudocomplemented semilattices. Alg. Univ. 25 (1988), 223–232.zbMATHCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1990

Authors and Affiliations

  • Jürg Schmid
    • 1
  1. 1.Mathematical InstituteUniversity of BernBernSwitzerland

Personalised recommendations