Residually Small Varieties Revisited

  • Ralph McKenzie


An exaustive survey on the topics of amalgamation, congruence extension, residual smallness, injectivity and related concepts and properties is E.W. Kiss, L. Márki, P. Pröhle, W. Tholen [10]. Our paper has a more modest aim. We focus almost exclusively on residual smallness. After a brief introduction, we discuss the current status of a fascinating open question that concerns the sizes of subdirectly irreducible algebras in finitely generated varieties.


Homomorphic Image Unary Algebra Finite Variety Amalgamation Property Finite Algebra 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Baldwin, J. Berman, J., The number of sub directly irreducible algebras in a variety, Algebra Universalis 5 (1975), 379–389.MathSciNetzbMATHCrossRefGoogle Scholar
  2. 2.
    Baldwin, J., The number of subdirectly irreducible algebras in a variety, II, Algebra Universalis 11 (1980), 1–6.MathSciNetzbMATHCrossRefGoogle Scholar
  3. 3.
    Birkhoff, G., On the structure of abstract algebras, Proc. Cambridge Philos. Soc. 31 (1935), 433–454.CrossRefGoogle Scholar
  4. 4.
    Birkhoff, G., Subdirect unions in universal algebra, Bull. Amer. Math. Soc. 50 (1944), 764–768.MathSciNetzbMATHCrossRefGoogle Scholar
  5. 5.
    Dziobiak, W., On infinite subdirectly irreducible algebras in locally finite equational classes, Algebra Universalis 13 (1981), 393–394.MathSciNetzbMATHCrossRefGoogle Scholar
  6. 6.
    Freese, R., McKenzie, R., Residually small varieties with modular congruence lattices, Trans. Amer. Math. Soc. 264 (1981), 419–430.MathSciNetzbMATHCrossRefGoogle Scholar
  7. 7.
    Golubov, E.A., Sapir, M.V., Varieties of finitely approximate semigroups, Izv. Vyss. Učebn. Zaved. Matematika, No. 11 (1982), 21–29; See also Soviet Math. Dokl. 20 (1979), No. 4, 828-832.MathSciNetGoogle Scholar
  8. 8.
    Hobby, D., McKenzie, R., “The structure of finite algebras”, Amer. Math. Soc. Contemporary Mathematics No. 76, 1988.Google Scholar
  9. 9.
    Kearnes, K., The relationship between AP, RS and CEP, (to appear), Trans. Amer. Math. Soc.Google Scholar
  10. 10.
    Kiss, E.W., Márki, L., Pröhle, P., Tholen, W., Categorical algebraic properties. Compendium on amalgamation, congruence extension, epimorphisms, residual smallness, and injectivity, Studia Scientiarum Mathematicarum Hungarica 18 (1983), 79–141.zbMATHGoogle Scholar
  11. 11.
    Kiss, E.W., Pröhle, P., Problems and results in tame congruence theory (A survey of the workshop), (preprint).Google Scholar
  12. 12.
    McKenzie, R., Residually small varieties of semigroups, Algebra Universalis 13 (1981), 171–201.MathSciNetzbMATHCrossRefGoogle Scholar
  13. 13.
    McKenzie, R., Residually small varieties of K-algebras, Algebra Universalis 14 (1982), 181–196.MathSciNetzbMATHCrossRefGoogle Scholar
  14. 14.
    McKenzie, R., A note on residually small varieties of semigroups, Algebra Universalis 17 (1983), 143–149.MathSciNetzbMATHCrossRefGoogle Scholar
  15. 15.
    McKenzie, R., Monotone clones, residual smallness and congruence distributivity, (preprint, 1989).Google Scholar
  16. 16.
    Quackenbush, R.W., Equational classes generated by finite algebras, Algebra Universalis 1 (1971), 265–266.MathSciNetzbMATHCrossRefGoogle Scholar
  17. 17.
    Ol’shanskii, A. Ju., Varieties of finitely approximate groups, Izv. Akad. Nauk. SSSR Ser. Mat. 33, No. 4 (1969), 915–927; English translation in Math. USSR-Izvestija 3, No. 4 (1960), 867-877.MathSciNetzbMATHGoogle Scholar
  18. 18.
    Taylor, W., Residually small varieties, Algebra Universalis 2 (1972), 33–53.MathSciNetzbMATHCrossRefGoogle Scholar
  19. 19.
    Taylor, W., Subdirectly irreducible algebras in regular, permutable varieties, Proc. Amer. Math. Soc. 75 (1979), 196–200.MathSciNetzbMATHGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1990

Authors and Affiliations

  • Ralph McKenzie
    • 1
  1. 1.Department of MathematicsUniversity of CaliforniaBerkeleyUSA

Personalised recommendations