On the Combinatorics of Free Algebras

  • Joel Berman


In this survey paper I discuss recent results concerning free algebraic systems and I mention some old results which motivated them. There is no attempt to be comprehensive. The selection of topics is eclectic and personal but with a special emphasis on results of a combinatorial nature.


Variety Versus Relation Algebra Free Algebra Free Generator Congruence Lattice 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. H. Andréka, B. Jónsson, and I. Németi, Relatively free relation algebras, preprint. K.A.Baker, G.F. McNulty, and W. Taylor [1989], Growth problems for unavoidable words, Theoretical Computer Science, to appear.Google Scholar
  2. R. Balbes and A. Horn [1970], Stone lattices, Duke Math. J. 37, pp. 537–546.MathSciNetzbMATHCrossRefGoogle Scholar
  3. J. Berman and M. Mukaidono [1984], Enumerating fuzzy switching functions and free Kleene algebras, Comp. and Math, with Applications 10, pp. 25–35.MathSciNetzbMATHCrossRefGoogle Scholar
  4. J. Berman and W. Blok [1987], The Fraser-Horn and apple properties, Trans. Amer. Math. Soc. 302, pp. 427–465.MathSciNetzbMATHCrossRefGoogle Scholar
  5. T.C. Brown, [1964], On the finiteness of semigroups in which x r = x, Proc. Cambridge Phil. Soc. 60, pp. 1028–1029.zbMATHCrossRefGoogle Scholar
  6. G. Grätzer [1969], Composition of functions, Proc. Conf. on Universal Algebra, Queen’s Univ. Kingston, Ontario, pp. 1-106.Google Scholar
  7. J.A. Green and D. Rees [1952], On semigroups in which x r = x, Proc. Cambridge Phil. Soc. 48, pp. 35-40.Google Scholar
  8. J. M. Howie [1976], An Introduction to Semigroup Theory, Academic Press.Google Scholar
  9. B. Jonsson and A. Tarski [1956], Two general theorems concerning free algebras, Bull. Amer. Math. Soc. 62, p. 554.Google Scholar
  10. B. Jonsson and A. Tarski [1961], On two properties of free algebras, Math. Scand. 9, pp. 95–101.MathSciNetzbMATHGoogle Scholar
  11. J. Kaiman [1958], Lattices with involution, Trans. Amer. Math. Soc. 87, pp. 485–491.MathSciNetCrossRefGoogle Scholar
  12. A. Kisielewicz [1981], The p n -sequences of idempotent algebras are strictly increasing, Algebra Universalis 13, pp. 233–250.MathSciNetzbMATHCrossRefGoogle Scholar
  13. A. Kisielewicz [1987], Characterization of p n -sequences for nonidempotent algebras, J. of Alg. 108, pp. 102–115.MathSciNetzbMATHCrossRefGoogle Scholar
  14. A. Kisielewicz, Solution of Marczewski’s problem on algebras with bases of different cardinalities, Fund. Math., to appear.Google Scholar
  15. S. Kleene [1952], Introduction to Metamathematics, pp. 332-340, Van Nostrand.Google Scholar
  16. D. McLean [1954], Idempotent semigroups, Amer. Math. Monthly 61, pp. 110–113.MathSciNetzbMATHCrossRefGoogle Scholar
  17. M. Morse and G. Hedlund [1944], Unending chess, symbolic dynamics, and a problem in semigroups, Duke Math. J. 11, pp. 1–7.MathSciNetzbMATHCrossRefGoogle Scholar
  18. M. Petrich [1973], An Introduction to Semigroups, Charles E. Merril Pub.Google Scholar
  19. J. Plonka [1967], On a method of construction of abstract algebras, Fund. Math. 61, pp. 183–189.MathSciNetzbMATHGoogle Scholar
  20. J. Plonka [1969], On equational classes of abstract algebras defined by regular equations, Fund. Math. 64, pp. 241–247.MathSciNetzbMATHGoogle Scholar
  21. J. Plonka [1971], On free algebras and algebraic decompositions of algebras from, some equation classes defined by regular equations, Algebra Universalis 1, pp. 261–264.MathSciNetzbMATHCrossRefGoogle Scholar
  22. A.B. Romanowska and J.D.H. Smith [1985], Modal Theory. An Algebraic Approach to Order, Geometry, and Convexity, Helderman Verlag.Google Scholar
  23. M.V. Sapir [1987], Burnside type properties and the finite basis property for varieties of semigroups, Izvestia Akad. Nauk USSR 51, pp. 319–339. (in Russian).MathSciNetGoogle Scholar
  24. S. Seif [1989], A note on free algebras of discriminator varieties, Algebra Universalis, to appear.Google Scholar
  25. A. Thue, [1912], Ube die gegenseitigen Lage gleicher Teile gewisser Zeichenreihen, Norske Vid. Selsk. Skr. I, Math. Nat. Kl. Christiana I, pp. 1–67.Google Scholar
  26. H. Werner [1978], Discriminator Varieties, Akademie Verlag.Google Scholar

Copyright information

© Springer Science+Business Media New York 1990

Authors and Affiliations

  • Joel Berman
    • 1
  1. 1.Dep. of Math., Stat. and Comp. ScienceUniv. of Illinois at ChicagoChicagoUSA

Personalised recommendations