Skip to main content

Semigroup Graded Rings and Jacobson Rings

  • Chapter
Book cover Lattices, Semigroups, and Universal Algebra

Abstract

We study when some graded rings are Jacobson rings. In particular we obtain that rings strongly graded either by a polycyclic-by-finite group, or by an abelian group of finite torsion free rank are Jacobson rings in case the identity component is a left Noetherian Jacobson ring. For monoid rings R[S] of abelian monoids of finite rank the same result holds without R being left Noetherian.

The author is supported in part by NSERC-grant OGP0036631.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. A. Bell, Localization and Ideal Theory in Noetherian Strongly Group-Graded Rings, J. Algebra 105 (1987), 76–115.

    Article  MathSciNet  MATH  Google Scholar 

  2. G. Bergman, Homogeneous elements and prime ideals in ℤ-graded rings, preprint.

    Google Scholar 

  3. W. Chin, D. Quinn, Rings graded by poly cyclic-by-finite groups, Proc. Amer. Math. Soc. 102(2) (1988), 235–241.

    Article  MathSciNet  MATH  Google Scholar 

  4. A.J. Clifford, G.B. Preston, The algebraic theory of semigroups, Vol. I, Math. Surveys Amer. Math. Soc. 7, Providence R.I., 1961.

    Google Scholar 

  5. M. Cohen, S. Montgommery, Group-graded rings, smash products, and group actions, Trans. Amer. Math. Soc. 282(1) (1984), 237–258.

    Article  MathSciNet  MATH  Google Scholar 

  6. M. Ferrero, E. Jespers, E.R. Puczylowski, Prime ideals of graded rings and related matters, to appear.

    Google Scholar 

  7. R. Gilmer, Commutative Semigroup Rings, The University of Chicago, 1984.

    Google Scholar 

  8. R. Gilmer, Hilbert subalgebras generated by monomials, Comm. Alg. 13(5) (1985), 1187–1192.

    Article  MathSciNet  MATH  Google Scholar 

  9. R. Gilmer, Commutative Monoid Rings as Hilbert Rings, Proc. Amer. Math. Soc. 94(1) (1985), 15–18.

    Article  MathSciNet  MATH  Google Scholar 

  10. A.W. Goldie, G. Michler, Öre extensions and polycyclic group rings, J. London Math. Soc. 9(2) (1974), 337–345.

    Article  MathSciNet  MATH  Google Scholar 

  11. O. Goldman, Hilbert rings and the Hilbert Nullstellensatz, Math. Zeit. 54 (1951), 136–140.

    Article  MATH  Google Scholar 

  12. P. Grzeszczuk, On G-systems and graded rings, Proc. Amer. Math. Soc. 95(3) (1985), 348–352.

    MathSciNet  MATH  Google Scholar 

  13. E. Jespers, On radicals of graded rings and applications to semigroup rings, Comm. Algebra 13(11) (1985), 2457–2472.

    Article  MathSciNet  MATH  Google Scholar 

  14. E. Jespers, Chain conditions and semigroup graded rings, J. Austral. Math. Soc. Series A 45 (1988), 372–380.

    Article  MathSciNet  MATH  Google Scholar 

  15. E. Jespers, Jacobson rings and rings strongly graded by an abelian group, Israel J. Math. 63(1) (1988), 67–78.

    Article  MathSciNet  MATH  Google Scholar 

  16. E. Jespers, J. Krempa, E.R. Puczylowski, On radicals of graded rings, Comm. Algebra 10(17) (1982), 1849–1854.

    Article  MathSciNet  MATH  Google Scholar 

  17. J. Krempa, J. Okninski, Group rings which are Jacobson rings, Arch. Math. 44 (1985), 20–25.

    Article  MathSciNet  MATH  Google Scholar 

  18. W. Krull, Jacobsonsche Ringe, Hilbertscher Nullstellensatz, Dimension Theorie, Math. Zeit. 54 (1951), 354–387.

    Article  MathSciNet  MATH  Google Scholar 

  19. C. Nastasescu, F. Van Oystaeyen, Graded ring theory, North Holland, Amsterdam, 1982.

    MATH  Google Scholar 

  20. J. Okninski, Commutative monoid rings with Krull dimensions, Lecture Notes in Math. 1320, Springer-Verlag, Berlin, 1988, 251–259.

    Google Scholar 

  21. D.S. Passman, The algebraic structure of group rings, Wiley, New York, 1977.

    MATH  Google Scholar 

  22. K.R. Pearson, W. Stephenson, A skew polynomial ring over a Jacobson ring need not be a Jacobson ring, Comm. Algebra 5(8) (1977), 783–794.

    Article  MathSciNet  MATH  Google Scholar 

  23. K.R. Pearson, W. Stephenson, Skew polynomial rings and Jacobson rings, Proc. London Math. Soc. 42(3) (1981), 559–576.

    Article  MathSciNet  MATH  Google Scholar 

  24. J.F. Watters, Polynomial extensions of Jacobson rings, J. Algebra 36 (1975), 302–308.

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1990 Springer Science+Business Media New York

About this chapter

Cite this chapter

Jespers, E. (1990). Semigroup Graded Rings and Jacobson Rings. In: Almeida, J., Bordalo, G., Dwinger, P. (eds) Lattices, Semigroups, and Universal Algebra. Springer, Boston, MA. https://doi.org/10.1007/978-1-4899-2608-1_12

Download citation

  • DOI: https://doi.org/10.1007/978-1-4899-2608-1_12

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4899-2610-4

  • Online ISBN: 978-1-4899-2608-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics