Magnetic Rare Earth Artificial Metallic Superlattices

  • J. J. Rhyne
  • R. W. Erwin
  • L. A. Borchers
  • M. B. Salamon
  • F. Tsui
  • R. Du
  • C. P. Flynn
Part of the NATO ASI Series book series (NSSB, volume 259)

Abstract

Intense interest has been generated over the past several years in the growth and properties of layered magnetic materials, both from a fundamental point of view and for applications. Layered structures have been prepared by a variety of techniques including sputtering, electro-deposition, and evaporation, and include semi-conducting, metallic, and insulating materials. These systems can consist of crystalline layers of one element or compound interleaved with layers of a different element or compound, or alternatively may be built of amorphous layers or amorphous layers alternated with crystalline layers. Depending on the materials and growth techniques, these multilayers may be produced (a) with no uniform crystallographic alignment or coherence from layer to layer, (b) with alignment of one specific crystallographic axis direction along the growth (stacking) direction, or (c) with true three-dimensional atomic order (epitaxy) in which there is multilayer atomic registry both along the growth axis and also within the growth planes. For the purposes of this review, the term artificial metallic superlattice will be reserved for this latter category of true three dimensionally coherent layered structures, while the term multilayer will be used for layered structures in which coherence is present in less than three dimensions.

Keywords

Anisotropy Graphite Hexagonal Coherence Sine 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    J. Kwo, D. B. McWhan, M. Hong, E. M. Gyorgy, L. C. Feldman, and J. E. Cunningham, Layered Structures, Epitaxy, and Interfaces, edited by J. H. Gibson and L. R. Dawson, Materials Research Society Symposia Proceedings 37 (Matls. Res. Soc., Pittsburgh, PA, 1985), pp 509.Google Scholar
  2. 2.
    J. Kwo, E.M. Gyorgy, D.B. McWhan, M. Hong, F.J. DiSalvo, C. Vettier, and J.E. Bower, Phys. Rev. Lett. 55, 1402 (1985)ADSCrossRefGoogle Scholar
  3. J. Kwo, E.M. Gyorgy, F.J. DiSalvo, M. Hong, Y. Yafet, and D.B. McWhan, J. Mag. and Magn. Matls. 74–77, 771 (1986).CrossRefGoogle Scholar
  4. 3.
    C.F. Majkrzak, J.W. Cable, J. Kwo, M. Hong, D.B. McWhan, Y. Yafet, J.V. Waszczak, and C. Vettier, Phys. Rev. Lett. 56, 2700 (1986).ADSCrossRefGoogle Scholar
  5. 4.
    S.M. Durbin, J. E. Cunningham, and C. P. Flynn, J. Phys. F 12, L75 (1982).ADSCrossRefGoogle Scholar
  6. 5.
    J.J. Rhyne, R.W. Erwin, Shantanu Sinha, J. Borchers, M.B. Salamon, R. Du, and C.P. Flynn, J. Appl. Phys. 61, 4043 (1987), and references therin.ADSCrossRefGoogle Scholar
  7. 6.
    M.B. Salamon, Shantanu Sinha, J.J. Rhyne, J.E. Cunningham, R.W. Erwin, J. Borchers, and C.P. Flynn, Phys. Rev. Lett. 56, 259 (1986).ADSCrossRefGoogle Scholar
  8. 7.
    R.W. Erwin, J.J. Rhyne, M.B. Salamon, J. Borchers, S. Sinha, R. Du, J.E. Cunningham, and C.P. Flynn, Phys. Rev. B 35, 6808 (1987).ADSCrossRefGoogle Scholar
  9. 8.
    J. Borchers, Shantanu Sinha, M.B. Salamon, R. Du, C.P. Flynn, J.J. Rhyne, and R.W. Erwin, J. Appl. Phys. 61, 4043 (1987).ADSCrossRefGoogle Scholar
  10. 9.
    J.J. Rhyne, R.W. Erwin, J. Borchers, M.B. Salamon, R. Du, and C.P. Flynn, Physica B 159 111 (1989).ADSCrossRefGoogle Scholar
  11. 10.
    R.W. Erwin, J.J. Rhyne, J. Borchers, M.B. Salamon, R. Du, and C.P. Flynn, J. Appl. Phys. 63, 3461 (1988).ADSCrossRefGoogle Scholar
  12. 11.
    R.W. Erwin, J.J. Rhyne, J. Borchers, M.B. Salamon, R. Du, and C.P. Flynn, Jour. de Physique, Colloque C8, 49 1631 (1988).Google Scholar
  13. 12.
    J.A. Borchers, Ph.D. Thesis, Univ. of Illinois, 1989; and to be published.Google Scholar
  14. 13.
    C.F. Majkrzak, Doon Gibbs, P. Boni, Alan I. Goldman, J. Kwo, M. Hong, T.C. Hsieh, R.M. Fleming, D.B. McWhan, Y, Yafet, J.W. Cable, J. Bohr, H. Grimm, and CL. Chien, J. Appl. Phys. 63, 3447 (1988).ADSCrossRefGoogle Scholar
  15. 14.
    C.C. Larsen, J. Jensen, and A.R. Mackintosh, Phys. Rev. Lett. 59, 712 (1987).ADSCrossRefGoogle Scholar
  16. 15.
    R. J. Elliott, ed., “Magnetic Properties of Rare Earth Metals” (Plenum Publishing, London) 1972.Google Scholar
  17. 16.
    K. A. Gschneidner, Jr., and LeRoy Eyring, eds., “Handbook on the Physics and Chemistry of Rare Earths,” (North Holland Publishing) vol. 1–2 (1979).Google Scholar
  18. 17.
    B. Coqblin, “The Electronic Structure of Rare Earth Metals and Alloys: The Magnetic Heavy Rare Earths” (Academic Press, London) 1977.Google Scholar
  19. 18.
    Doon Gibbs, D.E. Moncton, and K.L. D’Amico, J. Appl. Phys. 57, 3619 (1985).ADSCrossRefGoogle Scholar
  20. 19.
    Doon Gibbs, Jakob Bohr, J.D. Axe, D.E. Moncton, and K.L. D’Amico, Phys. Rev. B 34, 8182 (1986).ADSCrossRefGoogle Scholar
  21. 20.
    C.M. Falco, J.M. Slaughter, and B.N. Engel, this volume.Google Scholar
  22. 21.
    C.F. Majkrzak, Doon Gibbs, P. Boni, Alan I. Goldman, J. Kwo, M. Hong, T.C. Hsieh, R.M. Fleming, D.B. McWhan, Y, Yafet, J.W. Cable, J. Bohr, H. Grimm, and C.L. Chien, J. Appl. Phys. 63, 3447 (1988).ADSCrossRefGoogle Scholar
  23. 22.
    C.P. Flynn, F. Tsui, M.B. Salamon, R.W. Erwin, and J.J. Rhyne, J. Phys.: Condensed Matter 1, 5997 (1989).ADSCrossRefGoogle Scholar
  24. 23.
    Y. Yafet, J. Kwo, M. Hong, C.F. Majkrzak, and T. O’Brien, J. Appl. Phys. 63, 3453 (1988).ADSCrossRefGoogle Scholar
  25. 24.
    R.P. Gupta and A.J. Freeman, Phys. Rev. B 13, 4376 (1976).ADSCrossRefGoogle Scholar
  26. 25.
    S.H. Liu, R.P. Gupta, and S.K. Sinha, Phys. Rev. B 4, 1100 (1971).ADSCrossRefGoogle Scholar
  27. 26.
    S.C. Keeton and T.L. Loucks, Phys. Rev. 168, 672 (1968).ADSCrossRefGoogle Scholar
  28. 27.
    H.R. Child, W. C. Koehler, E. O. Wollan, and J. W. Cable, Phys. Rev. 138, A1655 (1965).ADSCrossRefGoogle Scholar
  29. 28.
    M. K. Wilkinson, W. C. Koehler, E. O. Wollan, and J. W. Cable, J. Appl. Phys. 32, 48S (1961).ADSCrossRefGoogle Scholar
  30. 29.
    R.J. Elliott, and F.A. Wedgwood, Proc. Phys. Soc. (London) 81, 846 (1963).ADSCrossRefGoogle Scholar
  31. 30.
    J.A. Borcher, G. Nieuwenhuys, M.B. Salamon, C.P. Flynn, R. Du, R.W. Erwin, and J.J. Rhyne, J. de Physique, Colloque C8, 49 1685 (1989).Google Scholar
  32. 31.
    B.R. Cooper, Phys. Rev. Letters 19, 900 (1967), Phys. Rev. 169, 281 (1968).ADSCrossRefGoogle Scholar
  33. 32.
    W.E. Evenson and S.H. Liu, Phys. Rev. 178, 783 (1969).ADSCrossRefGoogle Scholar
  34. 33.
    J.J. Rhyne and S. Legvold, Phys. Rev. 138, A507 (1965).ADSCrossRefGoogle Scholar
  35. 34.
    Earl Callen, J. Appl. Phys. 39, 519 (1968).ADSCrossRefGoogle Scholar
  36. 35.
    C. Vettier, D.B. McWhan, E.M. Gyorgy, J. Kwo, B.M. Buntschuh, and B.W. Batterman, Phys. Rev. Lett. 56, 757 (1986).ADSCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1991

Authors and Affiliations

  • J. J. Rhyne
    • 1
  • R. W. Erwin
    • 1
  • L. A. Borchers
    • 1
  • M. B. Salamon
    • 2
  • F. Tsui
    • 2
  • R. Du
    • 2
  • C. P. Flynn
    • 2
  1. 1.National Institute of Standards and TechnologyGaithersburgUSA
  2. 2.Department of PhysicsUniversity of IllinoisUrbanaUSA

Personalised recommendations