Plants as Sources of Medicinally and Pharmaceutically Important Compounds

  • A. Douglas Kinghorn


Mankind has profitably used extracts of plants for the treatment of human diseases for centuries. The beginning of the 19th century heralded an era in which the active secondary-metabolite principles of medicinal plants began to be purified, with such pure constituents then introduced into therapy, as evidenced in turn by morphine, quinine, atropine, papaverine, cocaine, and pilocarpine. Important plant-derived drugs have continued to be incorporated into the physician’s armamentarium in the 20th century, such as digitoxin, digoxin, ergometrine, ergotamine, reserpine, tubocurarine, vinblastine, and vincristine (Baerheim Svendsen and Scheffer, 1982; Tyler et al, 1988). The current importance and/or the potential of plants as sources of drug substances per se, as lead compounds for synthetic modification, and as excipients in pharmaceutical formulations has been addressed by others in recent years (Baerheim Svendsen and Scheffer, 1982; Balandrin and Klocke, 1988; Balandrin et al, 1985; Farnsworth, 1984; Galeffi and Marini-Bettolo, 1988; Hosier and Mikita, 1987; Phillipson and Anderson, 1987, 1989; Steiner, 1986; Tyler et al., 1988).


Plant Secondary Metabolite Indole Alkaloid Tropane Alkaloid Catharanthus Roseus Isoquinoline Alkaloid 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Alley, M. C., Scudiero, D. A., Monks, A., Mursey, M. L., Czerwinski, M. G, Fine, D. L., Abbott, B. J., Mayo, J. G., Shoemaker, R. H., and Boyd, M. R., 1988, Feasibility of drug screening with panels of human tumor cell lines using a microculture tetrazolium assay, Cancer Research, 48:589–601.PubMedGoogle Scholar
  2. Anonymous, 1988, High sweeteners — market size 7.2 billion yen. Stevia occupies 41%, but future gains will be made by aspartame, Food Chemicals (Tokyo), June issue, p. 19–26.Google Scholar
  3. Aronson, J. K., 1987, The discovery of the foxglove as a therapeutic agent, Chemistry in Britain, 23:33–36.Google Scholar
  4. Baerheim Svendsen, A., and Scheffer, J. J. G, 1982, Natural products in therapy. Prospects, goals and means in modern research, Pharmaceutisch Weekblad Scientific Edition, 4:93–103.CrossRefGoogle Scholar
  5. Balandrin, M. F., and Klocke, J. A., 1988, Medicinal, aromatic and industrial materials from plants, p. 3–36, in: “Biotechnology in Agriculture and Forestry 4. Medicinal and Aromatic Plants I,” Y. P. S. Bajaj, ed., Springer-Verlag, Berlin.CrossRefGoogle Scholar
  6. Balandrin, M. F., Klocke, J. A., Wurtele, E. S., and Bollinger, W. H., 1985, Natural plant chemicals: Sources of industrial and medicinal materials, Science, 228:1154–1160.PubMedCrossRefGoogle Scholar
  7. Baldwin, J. J., 1987, Drug design, p. 33–71, in: “Drug Discovery and Development,” M. Williams and J. B. Malick, eds., Humana Press, Clifton, New Jersey.CrossRefGoogle Scholar
  8. Bingel, A. S., and Fong, H. H. S., 1988, Potential fertility-regulating agents from plants, p. 73–118, in: “Economic and Medicinal Plants Research,” Volume 2, H. Wagner, H. Hikino, and N. R. Farnsworth, eds., Academic Press, London, United Kingdom.Google Scholar
  9. Blume, E., 1989, Investigators seek to increase taxol supply, Journal of the National Cancer Institute, 81:1122–1123.PubMedCrossRefGoogle Scholar
  10. Booth, W., 1987, Combing the earth for cures to cancer, AIDS, Science, 237:969–970.PubMedCrossRefGoogle Scholar
  11. Boyd, M. R., and Wilson, B. J., 1972, Isolation and characterization of 4-ipomeanol, a lung-toxic furanoterpenoid produced by sweet potatoes (Ipomea batatas), Journal of Agricultural and Food Chemistry, 20:428–430.PubMedCrossRefGoogle Scholar
  12. Brossi, A., Venugopalan, B., Domínguez Gerpe, L., Yeh, H. J. C., Flippen-Anderson, J. L., Buchs, P., Luo, X. D., Milhous, W., and Peters, W., 1988, Arteether, a new antimalarial drug: Synthesis and antimalarial properties, Journal of Medicinal Chemistry, 31:645–650.PubMedCrossRefGoogle Scholar
  13. Bruce-Chwatt, L. J., 1988, Cinchona and its alkaloids: 350 years, New York State Journal of Medicine, 88:318–322.PubMedGoogle Scholar
  14. Chen, H., and Shen, C., 1986, Health care in China: A unique relationship between ancient and modern medicine, Impact of Science on Society, 143:275–286.Google Scholar
  15. Christian, M. C., Wittes, R. E., Leyland-Jones, B., McLemore, T. L., Smith, A. C., Grieshaber, C. K., Chabner, B. A., and Boyd, M. R., 1989, 4-Ipomeanol: A novel investigational new drug for lung cancer, Journal of the National Cancer Institute, 15:1133–1143.CrossRefGoogle Scholar
  16. Cragg, G., and Suffness, M., 1988, Metabolism of plant-derived anticancer agents, Pharmacology and Therapeutics, 37:425–461.PubMedCrossRefGoogle Scholar
  17. De Clercq, E., 1989, New acquisitions in the development of anti-AIDS agents, Antiviral Research, 12:1–19.PubMedCrossRefGoogle Scholar
  18. Derome, A. E., 1989, The use of N. M. R. spectroscopy in the structure determination of natural products: Two dimensional methods, Natural Products Reports, 6:111–141.CrossRefGoogle Scholar
  19. de Souza, N. J., Ganguli, B. N., and Reden, J., 1982, Strategies in the discovery of drugs from natural sources, Annual Reports in Medicinal Chemistry, 17:301–310.CrossRefGoogle Scholar
  20. Dohadwalla, A. N., 1985, Natural product pharmacology: Strategies in search of leads for new drug designs, Trends in Pharmacological Sciences, 6:49–53.CrossRefGoogle Scholar
  21. Elliott, S., and Brimacombe, J., 1988, Tropical forests — nature’s pharmacy, Manufacturing Chemist, October issue, p. 25–26.Google Scholar
  22. Farber, S. A., 1990, The price of sweetness, Technology Review, January issue, p. 46–53.Google Scholar
  23. Farnsworth, N. R., 1973, Importance of secondary plant constituents as drugs, p. 351–380, in: “Phytochemistry — III,” L. P. Miller, ed., Van Nostrand Reinhold, New York, New York.Google Scholar
  24. Farnsworth, N. R., 1977, The current importance of plants as a source of drugs, p. 61–73, in: “Crop Resources,” D. S. Seigier, ed., Academic Press, New York, New York.Google Scholar
  25. Farnsworth, N. R., 1984, The role of medicinal plants in drug development, p. 17–30, in: “Natural Products and Drug Development: Alfred Benzon Symposium 20,” P. Krogsgaard-Larsen, S. Brogger-Christensen, and H. Kofod, eds., Munksgaard, Copenhagen, Denmark.Google Scholar
  26. Farnsworth, N. R., 1987, International perspectives regarding the use of food/natural products as drugs, Drug Information Journal, 21:245–250.Google Scholar
  27. Farnsworth, N. R., and Bingel, A. S., 1977, Problems and prospects of discovering new drugs from higher plants by pharmacological screening, p. 1–22, in: “New Natural Products and Plant Drugs with Pharmacological, Biological, or Therapeutical Activity,” H. Wagner and P. Wolff, eds., Springer-Verlag, New York, New York.CrossRefGoogle Scholar
  28. Farnsworth, N. R., and Kaas, C. J., 1981, An approach utilizing information from traditional medicine to identify tumor-inhibiting plants, Journal of Ethnopharmacology, 3:85–89.PubMedCrossRefGoogle Scholar
  29. Farnsworth, N. R., and Morris, R. W., 1976, Higher plants — the sleeping giant of drug development, American Journal of Pharmacy, 147:46–52.Google Scholar
  30. Farnsworth, N. R., Fong, H. H. S., and Diczfalusy, E., 1983, New fertility regulating agents from plants, p. 776–809, in: “Research on the Regulation of Human Fertility,” Volume 2, E. Diczfalusy and A. Diczfalusy, eds., Scriptor, Copenhagen, Denmark.Google Scholar
  31. Farnsworth, N. R., Akerele, O., Bingel, A. S., Soejarto, D. D., and Guo, Z., 1985, Medicinal plants in therapy, Bulletin of the World Health Organization, 63:965–981.PubMedGoogle Scholar
  32. Freter, K. R., 1987, Drug discovery — today and tomorrow: The role of medicinal chemistry, Pharmaceutical Research, 5:397–400.CrossRefGoogle Scholar
  33. Galeffi, C., and Marini-Bettolo, G. B., 1988, New approaches to the utilization of plants in the preparation of pharmaceuticals and pesticides, Fitoterapia, 54:179–205.Google Scholar
  34. Gerzon, K., 1980, Dimeric Catharanthus alkaloids, p. 271–317, in: “Anticancer Agents Based on Natural Product Models,” J. M. Cassady and J. D. Douros, eds., Academic Press, New York, New York.Google Scholar
  35. Giovanella, B. C., Stehlin, J. S., Wall, M. E., Wani, M. C., Nicholas, A. W., Liu, L. F., Silber, R., and Potmesil, M., 1989, DNA topoisomerase I-targeted chemotherapy of human colon cancer in xenografts, Science, 246:1046–1048.PubMedCrossRefGoogle Scholar
  36. Gustafson, K. R., Cardellina, J. H., Fuller, R. W., Weislow, O. S. Kiser, R. F. Snader, K. M. Patterson, G. M. L., and Boyd, M. R., 1989, AIDS-antiviral sulfolipids from cyanobacteria (blue-green algae), Journal of the National Cancer Institute, 81:1254–1258.PubMedCrossRefGoogle Scholar
  37. Han, J., 1988, Traditional Chinese medicine and the search for new antineoplastic drugs, Journal of Ethnopharmacology, 24:1–17.PubMedCrossRefGoogle Scholar
  38. Hartwell, J. L., 1968, Plants used against cancer. A survey, Lloydia, 31:71–74.Google Scholar
  39. Hite, G. J., 1988, Analgesics, p. 239–275, in: “Principles of Medicinal Chemistry,” 3rd Edition, W. O. Foye, ed., Lea & Febiger, Philadelphia, Pennsylvania.Google Scholar
  40. Hohenschutz, L. D., Bell, E. A., Jewess, P. J., Leworthy, D. P., Pryce, P. J., Arnold, E., and Clardy, J., 1981, Castanospermine, a 1,6,7,8-tetrahydroxyoctahydroindolizidine alkaloid, from the seeds of Castanosperma australe, Phytochemistry, 20:811–814.CrossRefGoogle Scholar
  41. Hosier, D. M., and Mikita, M. A., 1987, Ethnobotany: The chemist’s source for the identification of useful natural products, Journal of Chemical Education, 64:328–332.CrossRefGoogle Scholar
  42. Hussar, D. A., 1984, New drugs of 1983, American Pharmacist, NS24 (No. 3), p. 23–40.Google Scholar
  43. Hussar, D. A., 1987, New drugs of 1986, American Pharmacist, NS27 (No. 3), p. 26–61.Google Scholar
  44. Ito, M., Nakashima, H., Baba, M., Pauwels, R., De Clercq, E., Shiget, S., and Yamamoto, N., 1987, Inhibitory effect of glycyrrhizin on the in vitro infectivity and cytopathic activity of the human immunodeficiency virus [HIV (HTLV-III/LAV)], Antiviral Research, 7:127–137.PubMedCrossRefGoogle Scholar
  45. Jardine, I., 1980, Podophyllotoxins, p. 319–351, in: “Anticancer Agents Based on Natural Product Models,” J. M. Cassady and J. D. Douros, eds., Academic Press, New York, New York.Google Scholar
  46. Kinghorn, A. D., and Compadre, C. M., 1985, Naturally occurring intense sweeteners, Pharmaceutical International, 6:201–204.Google Scholar
  47. Kinghorn, A. D., and Soejarto, D. D., 1985, Current status of stevioside as a sweetening agent for human use, p. 1–52, in: “Medicinal and Economic Plant Research,” Volume 1, H. Wagner, H. Hikino, and N. R. Farnsworth, eds., Academic Press, London, United Kingdom.Google Scholar
  48. Kinghorn, A. D., and Soejarto, D. D., 1989, Intensely sweet compounds of natural origin, Medicinal Research Reviews, 9:91–115.PubMedCrossRefGoogle Scholar
  49. Klayman, D. L., 1985, Qinghaosu (Artemisinin): An antimalarial drug from China, Science, 228:1049–1055.PubMedCrossRefGoogle Scholar
  50. Kong, Y. C., Cheng, K.-F., Cambie, R. C., and Waterman, P. G., 1985, Yuehchukene: A novel indole alkaloid with anti-implantation activity, Journal of the Chemical Society, Chemical Communications, p. 47–48.Google Scholar
  51. Krakoff, I. H., 1986, Cancer chemotherapy: Where are we today?, p. 17–23, in: “Cancer Chemotherapy: Challenges for the Future,” K. Kimura, K. Yamada, I. H. Krakoff, and S. K. Carter, eds., Excerpta Medica, Amsterdam, The Netherlands.Google Scholar
  52. Labadie, R. P., 1986, Problems and possibilities in the use of traditional drugs, Journal of Ethnopharmacology, 15:221–230.PubMedCrossRefGoogle Scholar
  53. Lavie, G., Valentine, F., Levin, B., Mazur, Y., Gallo, G., Lavie, D., Weiner, D., and Meruelo, D., 1989, Studies on the mechanisms of action of the antiretroviral agents hypericin and pseudohypericin, Proceedings of the National Academy of Sciences of the United States of America, 86:5963–5967.PubMedCrossRefGoogle Scholar
  54. Loub, W. D., Farnsworth, N. R., Soejarto, D. D., and Quinn, M. L., 1985, NAPRALERT: Computer handling of natural product research data, Journal of Chemical Information and Computer Science, 25:99–103.Google Scholar
  55. McGrath, M. S., Hwang, K. M., Caldwell, S. E., Galston, I., Luk, K.-C, Wu, P., Ng, V. L., Crowe, S., Daniels, J., Marsh, J., Deinhart, T., Lekas, P. V., Vennari, J. C., Yeung, H. W., and Lifson, J. D., 1989, GLQ223: An inhibitor of human immunodeficiency virus replication in acutely and chronically infected cells of lymphocyte and mononuclear phagocyte lineage, Proceedings of the National Academy of Sciences of the United States of America, 86:2844–2848.PubMedCrossRefGoogle Scholar
  56. Midgley, J. M., 1988, Drug development: From sorcery to science, Pharmaceutical Journal, 241:358–365.Google Scholar
  57. Noble, R. L., Beer, C. T., and Cutts, J. H., 1958, Role of chance observations in chemotherapy: Vinca rosea, Annals of the New York Academy of Sciences, 76:882–894.PubMedCrossRefGoogle Scholar
  58. Nogrady, T., 1985, “Medicinal Chemistry — A Biochemical Approach,” Oxford University Press, New York, New York, p. 375–394.Google Scholar
  59. O’Brien Nabors, L., and Gelardi R. C., eds., 1986, “Alternative Sweeteners,” Marcel Dekker, New York, New York, 355 p.Google Scholar
  60. O’Neill, M. J., and Phillipson, J. D., 1989, Plants as sources of antimalarial compounds, Revista Latinoamericana de Química, 20–23:111–118.Google Scholar
  61. Peters, C. M., Gentry, A. H., and Mendelsohn, R. O., 1988, Valuation of an Amazonian rainforest, Nature, 339:655–656.CrossRefGoogle Scholar
  62. Pezzuto, J. M., 1986, Chemistry, metabolism and biological activity of steviol (ent-13-hydroxykaur-16-en-19-oic acid), the aglycone of stevioside, p. 371–386, in: “New Trends in Natural Products Chemistry 1986,” Atta-ur-Rahman and P. W. Le Quesne, eds., Elsevier Scientific Publishers, Amsterdam, The Netherlands.Google Scholar
  63. Phillipson, J. D., and Anderson, L. A., 1987, Plants as sources of new medicines, Pharmaceutical Journal, 239:662–666.Google Scholar
  64. Phillipson, J. D., and Anderson, L. A., 1989, Ethnopharmacology and western medicine, Journal of Ethnopharmacology, 25:61–72.PubMedCrossRefGoogle Scholar
  65. Piot, P., Plummer, F. A., Mhalu, F. S., Lamboray, J.-L., Chin, J., and Mann, J. M., 1988, AIDS: An international perspective, Science, 239:573–579.PubMedCrossRefGoogle Scholar
  66. Plotkin, M. J., 1988, Conservation, ethnobotany, and the search for new jungle medicines: Pharmacognosy comes of age...again, Pharmacotherapy, 8:257–262.PubMedGoogle Scholar
  67. Potts, M., 1989, Guest editorial, Contraception, 40:v-vi.Google Scholar
  68. Principe, P. P., 1989, The economic significance of plants and their constituents as drugs, p. 1–17, in: “Economic and Medicinal Plant Research,” Volume 3, H. Wagner, H. Hikino, and N. R. Farnsworth, eds., Academic Press, London, United Kingdom.CrossRefGoogle Scholar
  69. Rekola, M., 1989, In vivo acid production from medicines in syrup form, Caries Research, 23:412–416.PubMedCrossRefGoogle Scholar
  70. Roche, E. B., Kier, L. B., and Foye, W. O., 1988, Parasite chemotherapy, p. 717–738, in: “Principles of Medicinal Chemistry,” 3rd Edition, W. O. Foye, ed., Lea & Febiger, Philadelphia, Pennsylvania.Google Scholar
  71. Schultes, R. E., 1972, The future of plants as sources of new biodynamic compounds, p. 103–124, in: “Plants in the Development of Modern Medicine,” T. Swain, ed., Harvard University Press, Cambridge, Massachusetts.Google Scholar
  72. Shuler, A. V., 1985, “Malaria, Meeting the Global Challenge,” Agency for International Development, Oelgeschlager, Gunn & Hain, Boston, Massachusetts, 110 p.Google Scholar
  73. Sneader, W., 1985a, “Drug Discovery: The Evolution of Modern Medicines,” John Wiley & Sons, Chichester, United Kingdom, p. 48–57.Google Scholar
  74. Sneader, W., 1985b, “Drug Discovery: The Evolution of Modern Medicines,” John Wiley & Sons, Chichester, United Kingdom, p. 127–135.Google Scholar
  75. Soejarto, D. D., and Farnsworth, N. R., 1989, Tropical rain forests: Potential source of new drugs?, Perspectives in Biology and Medicine, 32:244–256.PubMedGoogle Scholar
  76. Soejarto, D. D., Bingel, A S., Slaytor, M., and Farnsworth, N. R., 1978, Fertility regulating agents from plants, Bulletin of the World Health Organization, 56:343–352.PubMedGoogle Scholar
  77. Spilker, B., 1989, “Multinational Drug Companies: Issues in Drug Discovery and Development,” Raven Press, New York, New York, p. 27–76.Google Scholar
  78. Spjut, R. W., 1985, Limitations of a random screen: Search for new anticancer agents in higher plants, Economic Botany, 39:266–288.CrossRefGoogle Scholar
  79. Spjut, R. W., and Perdue, R. E., Jr., 1976, Plant folklore: A tool for predicting sources of antitumor activity?, Cancer Treatment Reports, 60:979–985.PubMedGoogle Scholar
  80. Steiner, R. P., ed., 1986, “Folk Medicine: The Art and the Science,” American Chemical Society, Washington, D.C., 223 p.Google Scholar
  81. Svoboda, G. H., 1961, Alkaloids of Vinca rosea (Catharanthus roseus). IX. Extraction and characterization of leurosidine and leurocristine, Journal of Pharmaceutical Sciences, 24:173–178.Google Scholar
  82. Svoboda, G. H., Neuss, N., and Gorman, M., 1959, Alkaloids of Vinca rosea Linn. (Catharanthus roseus G. Don.). V. Preparation and characterization of alkaloids, Journal of American Pharmaceutical Association Scientific Edition, 48:659–666.CrossRefGoogle Scholar
  83. Tims, A. S., and Taylor, D. L., 1988, Activity of glucosidase inhibitors against HIV infections, Journal of Antimicrobial Chemotherapy, 22:271–274.CrossRefGoogle Scholar
  84. Trigg, P. I., 1989, Qinghaosu (artemisinin) as an antimalarial drug, p. 19–55, in: “Economic and Medicinal Plant Research,” Volume 3, H. Wagner, H. Hikino, and N. R. Farnsworth, eds., Academic Press, London, United Kingdom.CrossRefGoogle Scholar
  85. Tyler, V. E., Brady, L. R., and Robbers, J. E., 1988, “Pharmacognosy,” 9th Edition, Lea & Febiger, Philadelphia, Pennsylvania, 519 p.Google Scholar
  86. Vanden Berghe, D. A, Vlietinck, A. J., and Van Hoof, L., 1986, Plant products as potential antiviral agents, Bulletin del’Institut Pasteur, 84:101–147.Google Scholar
  87. Verpoorte, R., Harkes, P. A. A, and ten Hoopen, H. J. G., 1987, Plant cell cultures as a tool in the production of secondary metabolites. Prospects and problems, p. 263–281, in: “Topics in Pharmaceutical Sciences 1987,” D. D. Breimer and P. Speiser, eds., Elsevier Science Publishers, Amsterdam, The Netherlands.Google Scholar
  88. Wall, M. E., Wani, M. C., Cook, C. E., Palmer, K. H., McPhail, A T., and Sim, G. A, 1966, Plant antitumor agents. I. The isolation and structure of camptothecin, a novel alkaloidal leukemia and tumor inhibitor from Camptotheca acuminata, Journal of the American Chemical Society, 88:3888–3890.CrossRefGoogle Scholar
  89. Waller, D. P., Zaneveld, L. J. D., and Farnsworth, N. R., 1985, Gossypol: Pharmacology and current status as a male contraceptive, p. 87–112, in: “Economic and Medicinal Plants Research,” Volume 1, H. Wagner, H. Hikino, and N. R. Farnsworth, eds., Academic Press, London, United Kingdom.Google Scholar
  90. Wang, Z.-G., and Liu, G.-Z., 1985, Advances in natural products in China, Trends in Pharmacological Sciences, 6:423–426.CrossRefGoogle Scholar
  91. Wani, M. C., Taylor, H. L., Wall, M. E., Coggon, P., and McPhail, A. T., 1970, Plant antitumor agents. VI. The isolation and structure of taxol, a novel antileukemic and antitumor agent from Taxus brevifolia, Journal of the American Chemical Society, 93:2325–2327.CrossRefGoogle Scholar
  92. Xiao, P., and Chen, K., 1987, Recent advances in clinical studies of Chinese medicinal herbs. 1. Drugs affecting the cardiovascular system. Phytotherapy Research, 1:53–57.CrossRefGoogle Scholar
  93. Xiao, P.-G., and Chen, K., 1988, Recent advances in clinical studies of Chinese medicinal herbs. 2. Clinical trials of Chinese herbs in a number of chronic conditions, Phytotherapy Research, 2:55–62.CrossRefGoogle Scholar
  94. Xiao, P.-G., and Fu, S.-L., 1987, Pharmacologically active stubstances of Chinese traditional and herbal medicines, p. 1–55, in: “Herbs, Spices, and Medicinal Plants: Recent Advances in Botany, Horticulture, and Pharmacology,” Volume 2, L. E. Craker and J. E. Simon, Oryx Press, Phoenix, Arizona.Google Scholar

Copyright information

© Springer Science+Business Media New York 1992

Authors and Affiliations

  • A. Douglas Kinghorn
    • 1
  1. 1.Program for Collaborative Research in the Pharmaceutical Sciences and Department of Medicinal Chemistry and Pharmacognosy College of PharmacyUniversity of Illinois at ChicagoChicagoUSA

Personalised recommendations