Cell Structure and the Regulation of Genes Controlling Proliferation and Differentiation: The Nuclear Matrix and Cytoskeleton

  • Gary S. Stein
  • Jane B. Lian
  • Thomas A. Owen
  • Janet L. Stein
  • Melissa Tassinari
  • Andre van Wijnen
  • Leesa M. Barone
  • Victoria Shalhoub
  • Michael Aronow
  • Gerry Zambetti
  • Steven I. Dworetzky
  • Shirwin Pockwinse
  • Joost Holthuis
Part of the NATO ASI Series book series (NSSA, volume 209)


In this chapter and in the one which follows we will present concepts and experimental approaches associated with the relationship of proliferation to differentiation with emphasis on the contribution of cell structure to the regulation of cell growth and tissue specific gene expression. While these relationships are of broad biological relevance, we will focus primarily on development of the osteoblast phenotype with the understanding that analogous principles apply to the regulation of phenotype expression in general.


Nuclear Matrix Histone Gene Tissue Specific Gene Expression Osteoblast Phenotype Histone mRNA 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    G. Rovera, D. Santoli, and C. Damsky, Human promyelocytic leukemia cells in culture differentiate into macrophage-like cells when treated with a phorbol diester, Proc. Natl. Acad. Sci., USA, 76:2779–2783. (1979)PubMedCrossRefGoogle Scholar
  2. 2.
    E. Huberman and M. Callahan, Induction of terminal differentiation in human promyelocytic leukemia cells by tumor-promoting agents, Proc. Natl. Acad. Sci. USA, 76:1293–1297 (1979).PubMedCrossRefGoogle Scholar
  3. 3.
    H. Green, Adipose conversion: a program of differentiation, in “Obesity, Cellular and Molecular Aspects”, G. Ailhaud, ed., Editions INSERM, Paris, pp. 15–25 (1979).Google Scholar
  4. 4.
    B. M. Spiegelman and H. Green, Control of specific protein biosynthesis during the adipose conversion of 3T3 cells, J. Biol. Chem., 255:8811–8818 (1980).PubMedGoogle Scholar
  5. 5.
    B. Nadal-Ginard, Commitment, fusion, and biochemical differentiation of a myogenic cell line in the absence of DNA synthesis, Cell, 15:855–864 (1978).PubMedCrossRefGoogle Scholar
  6. 6.
    K. Okazaki and H. Holtzer, Myogenesis: fusion, myosin synthesis and the mitotic cycle, Proc. Natl. Acad. Sci. USA., 56:1484–1488 (1966).PubMedCrossRefGoogle Scholar
  7. 7.
    J.G. Rheinwald and H. Green, Serial cultivation of strains of human epidermal keratinocytes: the formation of keratinizing colonies from single cells, Cell, 6:331–344 (1975).PubMedCrossRefGoogle Scholar
  8. 8.
    R.H. Rice and H. Green, Presence in human epidermal cells of a soluble protein precursor of the cross-linked envelope: activation of the cross-linking by calcium ions, Cell, 18:681–694 (1979).PubMedCrossRefGoogle Scholar
  9. 9.
    C.G. Bellows, J.E. Aubin, J.N.M. Heersche, and M.E. Antosa, Mineralized bone nodules formed in vitro from enzymatically released rat calvaria populations, Calcif. Tissue Int., 38:143–154 (1986).PubMedCrossRefGoogle Scholar
  10. 10.
    U. Bhargava, M. Bar-Lev, C.G. Bellows and V. Aubin, Ultrastructural analysis of bone nodules formed in vitro by isolated fetal rat calvarial cells, Bone, 9:155–163 (1988).PubMedCrossRefGoogle Scholar
  11. 11.
    B. Escarot-Charrier, F.H. Glorieux, M. van der Rest and G. Pereira, Osteoblasts isolated from mouse calvaria initiate matrix mineralization in culture, J. Cell Biol., 96:639–643 (1983).CrossRefGoogle Scholar
  12. 12.
    L.C. Gerstenfeld, S.D. Chipman, J. Glowacki and J.B. Lian, Expression of differentiated function by mineralizing cultures of chicken osteoblasts, Dev. Biol., 122:49–60 (1987).PubMedCrossRefGoogle Scholar
  13. 13.
    M.A. Aronow, L.C. Gerstenfeld, T.A. Owen, M.S. Tassinari, G.S. Stein and J.B. Lian, Factors that promote progressive development of the osteoblast phenotype in cultured fetal rat calvaria cells, J. Cell. Physiol., 143:213–221 (1990).PubMedCrossRefGoogle Scholar
  14. 14.
    T.A. Owen, M. Aronow, V. Shalhoub, L.M. Barone, L. Wilming, M.S. Tassinari, M.B. Kennedy, S. Pockwinse, J.B. Lian and G.S. Stein, Progressive development of the rat osteoblast phenotype in vitro: reciprocal relationships in expression of genes associated with osteoblast proliferation and differentiation during formation of the bone extracellular matrix, J. Cell. Physiol., 143:420–430 (1990).PubMedCrossRefGoogle Scholar
  15. 15.
    B. Escarot-Charrier, N. Shepard, G. Charette, M. Grynpas and F.H. Glorieux, Mineralization in osteoblast cultures: a light and electron microscopic study, Bone, 9:147–154 (1988).CrossRefGoogle Scholar
  16. 16.
    G.S. Stein, J.B. Lian, L. Gerstenfeld, V. Shalhoub, M. Aronow, T. Owen and E. Markose, The onset and progression of osteoblast differentiation is functionally related to cellular proliferation, Conn. Tissue Res., 20:3–13 (1989).CrossRefGoogle Scholar
  17. 17.
    M.J. Glimcher, Mechanism of calcification in bone: role of collagen fibrils and collagen phosphoprotein complexes in vitro and in vivo. Anatomical Record, 224:139–153 (1989).PubMedCrossRefGoogle Scholar
  18. 18.
    K. Yoon, R. Buenaga and G.A. Rodan, Tissue specificity and developmental expression of osteopontin, Biochem. Biophys. Res. Comm., 148:1129–1136 (1987).PubMedCrossRefGoogle Scholar
  19. 19.
    J.L. Carrington, A.B. Roberts, K.C. Flanders, N.S. Roche and A.H. Reddi, Accumulation, localization, and compartmentation of transforming growth factor β during endochondral bone development, J. Cell Biol., 107:1969–1975 (1988).PubMedCrossRefGoogle Scholar
  20. 20.
    R. Borteil, L.M. Barone, M.S. Tassinari, J.B. Lian and G.S. Stein, Coordinate expression of transforming growth factor β1 and collagen type I genes, but not collagen type II, during endochondral bone formation, J. Cell Biochem., 44:81–91 (1990).CrossRefGoogle Scholar
  21. 21.
    M. Centrella, T.L. McCarthy and E. Canalis, Skeletal tissue and transforming growth factor β FASEB J., 2:3066–3073 (1988).PubMedGoogle Scholar
  22. 22.
    U. Rüther, C. Garber, D. Komitowski, Müller and E.F. Wagner, Deregulated c-fos expression interferes with normal bone development in transgenic mice, Nature, 325:412–416 (1987).PubMedCrossRefGoogle Scholar
  23. 23.
    S. Nomura, A.J. Wills, D.R. Edwards, J.K. Heath and B.L.M. Hogan, Developmental expression of 2ar (osteopontin) and SPARC (osteonectin) RNA as revealed by in situ hybridization, J. Cell Biol., 106:441–450 (1988).PubMedCrossRefGoogle Scholar
  24. 24.
    A. Oldberg, A. Franzen and D. Heinegard, Cloning and sequence analysis of rat bone sialoprotein (osteopontin) cDNA reveals an Arg-Gly-Asp cell-binding sequence, Proc. Natl. Acad. Sci. USA., 83:8819–8823 (1986).PubMedCrossRefGoogle Scholar
  25. 25.
    D. Heinegård and Å. Oldberg, Structure and biology of cartilage and bone matrix noncollagenous macromolecules. FASEB J., 3:2042–2051 (1989).PubMedGoogle Scholar
  26. 26.
    J.B. Lian and P.A. Friedman, The vitamin K-dependent synthesis of γ-carboxyglutamic acid by bone microsomes J. Biol. Chem., 253:6623–6626 (1978).PubMedGoogle Scholar
  27. 27.
    J.B. Lian, M.C. Coutts and E. Canalis, Studies of hormonal regulation of osteocalcin synthesis in cultured fetal rat calvariae, J. Biol. Chem., 260:8706–8710 (1985).PubMedGoogle Scholar
  28. 28.
    A.M. Craig, J.H. Smith and D.T. Denhardt, Osteopontin, a transformation-associated cell adhesion phosphoprotein, is induced by 12-0-tetradecanoylphorbol 13-acetate in mouse epidermis, J. Biol. Chem., 264: 9682–9689 (1989).PubMedGoogle Scholar
  29. 29.
    M.J. Glimcher, Role of collagen and phosphoproteins in the calcification of bone and other collagenous tissues, in “Calcium in Biological Systems”. R.P. Rubin, G.B. Weiss, and J.W. Putney, eds. Plenum Press, New York. pp. 607–616 (1985).CrossRefGoogle Scholar
  30. 30.
    J.B. Lian and CM. Gundberg, Clinical significance of serum osteocalcin and urine Gla measurements, Clin. Orthop. Relat. Res., 266:267–291 (1988).Google Scholar
  31. 31.
    R.J. Majeska, B.C. Nair and G.A. Rodan, Glucocorticoid regulation of alkaline phosphatase in the osteoblastic osteosarcoma cell line ROS 17/2.8, Endocrinology, 116:1, 170–179 (1985).PubMedCrossRefGoogle Scholar
  32. 32.
    M. Plumb, J. Stein and G. Stein, Coordinate regulation of multiple histone mRNAs during the cell cycle in HeLa cells, Nucleic Acids Res., 11:2391–2410 (1983).PubMedCrossRefGoogle Scholar
  33. 33.
    L.L. Baumbach, G.S. Stein and J.L. Stein, Regulation of human histone gene expression: transcriptional and posttranscriptional control in the coupling of histone messenger RNA stability with DNA replication, Biochemistry, 26:6178–6187 (1987).PubMedCrossRefGoogle Scholar
  34. 34.
    T.A. Owen, J. Holthuis, E. Markose, A.J. van Wijnen, J.B. Lian and G.S. Stein, Modifications of protein-DNA interactions in the proximal promoter of a cell growth regulated histone gene during the onset of osteoblast differentiation. Proc. Natl. Acad. Sci.. 87:5129–5133 (1990).PubMedCrossRefGoogle Scholar
  35. 35.
    U. Pauli, S. Chrysolgelos, G. Stein, J. Stein and H. Nick, Protein-DNA interactions in vivo upstream of a cell cycle-regulated human H4 histone gene, Science 236:1308–1311 (1987).PubMedCrossRefGoogle Scholar
  36. 36.
    A. van Wijnen, K.L. Wright, J.B. Lian, J.L. Stein and G.S. Stein, Human H4 histone gene transcription requires the proliferation-specific nuclear factor HiNF-D, J. Biol. Chem., 264:15034–15042 (1989).PubMedGoogle Scholar
  37. 37.
    V. Shalhoub, L.C. Gerstenfeld, D. Collart, J.B. Lian and G.S. Stein, Down-regulation of cell growth and cell cycle regulated genes during chick osteoblast differentiation with the reciprocal expression of histone gene variants, Biochemistry, 28:5318–5322 (1989).PubMedCrossRefGoogle Scholar
  38. 38.
    G. Stein, J. Lian, J. Stein, R. Briggs, V. Shalhoub, K. Wright, U. Pauli and A. van Wijnen, Altered binding of human histone gene transcription factors during the shutdown of proliferation and onset of differentiation in HL-60 cells., Proc. Natl. Acad. Sci. USA, 86:1865–1869 (1989).PubMedCrossRefGoogle Scholar
  39. 39.
    A. Lichtler, M.L. Stover, J. Angilly, B. Kream and D.W. Rowe, Isolation and characterization of the rat α1(I) collagen promoter, J. Biol. Chem., 264:3072–3077 (1989).PubMedGoogle Scholar
  40. 40.
    E.R. Markose, J.L. Stein, G.S. Stein and J.B. Lian, Vitamin D-mediated modifications in protein-DNA interactions at two promoter elements of the osteocalcin gene, Proc. Natl. Acad. Sci. USA., 87:1701–1705 (1990).PubMedCrossRefGoogle Scholar
  41. 41.
    T.A. Owen, R. Bortell, S.A. Yocum, S.L. Smock, M. Zhang, V. Shalhoub, N. Aronin, K.L. Wright, A.J. van Wijnen, C. Abate, J.L. Stein, T. Curran, J.B. Lian and G.S. Stein, Phenotype suppression of osteocalcin gene expression in osteoblasts by coordinate occupancy of the AP-1 sites in the vitamin D responsive and CAAT box elements by Fos-Jun. Proc. Natl. Acad. Sci., U.S.A., In Press.Google Scholar
  42. 42.
    S.B. Rodan, G. Wesolowski, K. Yoon and G.A. Rodan, Opposing effects of fibroblast growth factor and pertussis toxin on alkaline phosphatase, osteopontin, osteocalcin, and type I collagen mRNA levels in ROS 17/2.8 cells, J. Biol. Chem., 264:19934–19941 (1989).PubMedGoogle Scholar
  43. 43.
    M. Noda and G.A. Rodan, Type β transforming growth factor (TGFβ) regulation of alkaline phosphatase expression and other phenotype-related mRNAs in osteoblastic rat osteosarcoma cells, J. Cell. Physiol., 133:426–437 (1987).PubMedCrossRefGoogle Scholar
  44. 44.
    J. Holthuis, T.A. Owen, A.J. van Wijnen, K.L. Wright, A. Ramsey-Ewing, M.B. Kennedy, R. Carter, S.C. Cosenza, K.J. Soprano, J.B. Lian, J.L. Stein and G.S. Stein, Tumor cells exhibit deregulation of the cell cycle histone gene promoter factor HiNF-D, Science, 247:1454–1457 (1990).PubMedCrossRefGoogle Scholar
  45. 45.
    E.G. Fey and S. Penman, Nuclear matrix proteins reflect cell type of origin in cultured human cells, Proc. Natl. Acad. Sci., 85:121–5 (1988).PubMedCrossRefGoogle Scholar
  46. 46.
    D.M. Pardoll, B. Vogelstein and D. Coffey, A fixed site of DNA replication in eukaryotic cells, Cell, 19:527–536 (1980).PubMedCrossRefGoogle Scholar
  47. 47.
    B. Nelkin, D. Pardoll and B. Vogelstein, Localization of SV40 genes within supercoiled 100P domains, Nucl. Acids Res. 8:5623–5633 (1980).PubMedCrossRefGoogle Scholar
  48. 48.
    S.I. Robinson, B.D. Nelkin and B. Vogelstein, The ovalbumin gene is associated with the nuclear matrix of chicken oviduct cells, Cell, 28:99–106 (1982).PubMedCrossRefGoogle Scholar
  49. 49.
    C.A.G. van Eekelen and W.J. van Venrooij, hnRNA and its attachment to a nuclear protein matrix, J. Cell Biol., 88:554–563 (1981).PubMedCrossRefGoogle Scholar
  50. 50.
    S. Zeitlin, A. Parent, S. Silverstein and A. Efstratiadis, Pre-mRNA splicing and the nuclear matrix, Mol. Cell. Biol., 7:111–120 (1987).PubMedGoogle Scholar
  51. 51.
    E. Barrack and D. Coffey, In Gene Regulation by Steroid Hormones, II, (A.K. Roy and J.H. Clark, eds.) Springer-Verlig, New York, p. 239–266 (1983).CrossRefGoogle Scholar
  52. 52.
    M.H. Kumara, L.H. Shapiro and M.I. Surks, Association of the 3,5,3′-triiodo-L-thyronine nuclear receptor with the nuclear matrix of cultured growth hormone-producing rat pituitary tumor cells, J. Biol. Chem., 261:2844–2852 (1986).Google Scholar
  53. 53.
    D.G. Capco, K.M. Wan and S. Penman, The nuclear matrix: three dimensional architecture and protein composition, Cell, 29:847–858 (1982).PubMedCrossRefGoogle Scholar
  54. 54.
    E.G. Fey, K.M. Wan and S. Penman, Epithelial cytoskeletal framework and nuclear matrix-intermediate filament scaffold: three dimensional organization and protein composition, J. Cell Biol., 98:1973–1984 (1984).PubMedCrossRefGoogle Scholar
  55. 55.
    D. He, J. Nickerson and S. Penman, Core filaments of the nuclear matrix, J. Cell Biol., 110:569–580 (1990).PubMedCrossRefGoogle Scholar
  56. 56.
    E.G. Fey, G. Krochmalnic and S. Penman, The nonchromatin substructures of the nucleus: the ribonucleoprotein (RNP)-containing and RNP-depleted matrices analyzed by sequential fractionation and resinless section electron microscopy, J. Cell Biol., 102:1654–1665 (1986).PubMedCrossRefGoogle Scholar
  57. 57.
    F. Marashi, L. Baumbach, R. Rickles, F. Sierra, J.L. Stein and G.S. Stein, Histone proteins in HeLa S3 cells are synthesized in a cell cycle state specific manner. Science, 215:683–685 (1982).PubMedCrossRefGoogle Scholar
  58. 58.
    J. Spaulding, K. Kajiwara and G.C. Mueller, The metabolism of basic proteins in HeLa cell nuclei, Proc. Natl. Acad. Sci. USA. 56:1535–1542 (1966).CrossRefGoogle Scholar
  59. 59.
    E. Robbins and T.W. Borun, The cytoplasmic synthesis of histones in HeLa cells and its temporal relationship to DNA replication, Proc. Natl. Acad. Sci. USA, 57:409–416 (1967).PubMedCrossRefGoogle Scholar
  60. 60.
    G.S. Stein and T.W. Borun, The synthesis of acidic chromosomal proteins during the cell cycle of HeLa S3 cells: I. The accelerated accumulation of acidic residual nuclear protein before the initiation of DNA replication, J. Cell Biol., 52:292–307 (1972).PubMedCrossRefGoogle Scholar
  61. 61.
    R.S. Wu and W.M. Bonner, Separation of basal histone synthesis from S-phase histone synthesis in dividing cells, Cell, 27:321–330 (1981).PubMedCrossRefGoogle Scholar
  62. 62.
    W.B. Butler and G.C. Mueller, Control of histone synthesis in HeLa cells, Biochim. Biophys. Acta, 294:481–496 (1973).PubMedCrossRefGoogle Scholar
  63. 63.
    S. Helms, L. Baumbach, G. Stein and J. Stein, Requirement of protein synthesis for the coupling of histone mRNA levels and DNA replication, FEBS Lett., 168:65–69 (1984).PubMedCrossRefGoogle Scholar
  64. 64.
    L. Baumbach, F. Marashi, M. Plumb, G. Stein and J. Stein, Inhibition of DNA replication coordinately reduces cellular levels of core and H1 histone mRNAs” requirement for protein synthesis, Biochemistry, 23:1618–1625 (1984).PubMedCrossRefGoogle Scholar
  65. 65.
    D. Sittman, R.A. Graves and W.F. Marzluff, Histone mRNA concentrations are regulated at the level of transcription and mRNA degradation, Proc. Natl. Acad. Sci. USA, 80:1849–1853 (1983).PubMedCrossRefGoogle Scholar
  66. 66.
    N. Heintz, H.L. Sive and R.G. Roeder, Regulation of human histone gene expression: kinetics of accumulation and changes in the rate of synthesis and in the half-lives of individual histone mRNAs during the HeLa cell cycle, Mol. Cell. Biol., 3:539–550 (1983).PubMedGoogle Scholar
  67. 67.
    M. Plumb, J. Stein and G. Stein, Coordinate regulation of multiple histone mRNAs during the cell cycle in HeLa cells, Nucleic Acids Res., 11:2391–2410 (1983).PubMedCrossRefGoogle Scholar
  68. 68.
    M. Plumb, J. Stein and G. Stein, Influence of DNA synthesis inhibition on the coordinate expression of core human histone genes during S phase, Nucleic Acids Res., 11:7927–7945 (1983).PubMedCrossRefGoogle Scholar
  69. 69.
    L. Baumbach, J. Stein and G. Stein, Regulation of human histone gene expression: transcriptional and posttranscriptional control in the coupling of histone messenger RNA stability with DNA replication, Biochemistry, 26:6178–6187 (1987).PubMedCrossRefGoogle Scholar
  70. 70.
    S.W. Peltz, G. Brewer, P. Bernstein, P.A. Hart and J. Ross, Regulation of mRNA Turnover in Eukaryotic Cells, Crit. Rev. in Eukaryotic Gene Exp., in press, (1990).Google Scholar
  71. 71.
    J.L. Stein, C.L. Thrall, W.D. Park, R.J. Mans and G.S. Stein, Hybridization analysis of histone messenger RNA: Association with polyribosomes during the cell cycle, Science, 189:557–558 (1975).PubMedCrossRefGoogle Scholar
  72. 72.
    T.W. Borun, M.D. Scharff and E. Robbins, Rapidly labeled polyribosome-associated RNA having the properties of histone messenger, Proc. Natl. Acad. Sci. USA, 58:1977–1983 (1967).PubMedCrossRefGoogle Scholar
  73. 73.
    G. Zambetti, W. Schmidt, G. Stein and J. Stein, Subcellular localization of histone messenger RNAs on cytoskeleton-Associated free polysomes in HeLa S3 cells, J. Cell. Physiol., 125:345–353 (1985).PubMedCrossRefGoogle Scholar
  74. 74.
    J.B. Lawrence, R.H. Singer, C.A. Villnave, J.L. Stein and G.S. Stein, Intracellular distribution of histone mRNAs in human fibroblasts studied by in situ hybridization, Proc. Natl. Acad. Sci, USA, 85:463–467 (1988).PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1991

Authors and Affiliations

  • Gary S. Stein
    • 1
  • Jane B. Lian
    • 1
  • Thomas A. Owen
    • 1
  • Janet L. Stein
    • 1
  • Melissa Tassinari
    • 1
  • Andre van Wijnen
    • 1
  • Leesa M. Barone
    • 1
  • Victoria Shalhoub
    • 1
  • Michael Aronow
    • 1
  • Gerry Zambetti
    • 1
  • Steven I. Dworetzky
    • 1
  • Shirwin Pockwinse
    • 1
  • Joost Holthuis
    • 1
  1. 1.Department of Cell BiologyUniversity of Massachusetts Medical CenterWorcesterUSA

Personalised recommendations