Advertisement

Principal Ideas of Crystal Growth

  • E. I. Givargizov
Part of the Microdevices book series (MDPF)

Abstract

The major subject of this book, artificial epitaxy, represents a part of the more general phenomenon of epitaxy, i.e., oriented overgrowth of one material on another. In turn, epitaxy is a part of that branch of science termed “growth (or formation) of crystals.” Between these two “levels,” there exists a certain relationship (a rather common one in science): One follows from the other, and each enriches the other.

Keywords

Crystal Growth Epitaxial Growth Equilibrium Shape Crystallization Front Amorphous Substrate 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    M. Volmer, Kinetik der Phasenbildung, Steinkopff, Darmstadt (1939).Google Scholar
  2. 2.
    A. van Hook, Crystallization: Theory and Practice, Reinhold, New York (1961).Google Scholar
  3. 3.
    R. F. Strickland-Constable, Kinetics and Mechanism of Crystallization, Academic Press, New York (1968).Google Scholar
  4. 4.
    J. W. Mullin, Crystallization, Butterworths, London (1972).Google Scholar
  5. 5.
    Crystal Growth: An Introduction (P. Hartman, ed.), North-Holland, Amsterdam (1973).Google Scholar
  6. 6.
    Modern Crystallography-III.: Crystal Growth (A. A. Chernov, ed.), Springer-Verlag, Berlin (1984).Google Scholar
  7. 7.
    H. Hollomon and D. Turnbull, Nucleation, Prog. Met. Phys. 4, 333–388 (1953).Google Scholar
  8. 8.
    J. P. Hirth and G. M. Pound, Condensation and evaporation: Nucleation and growth kinetics, Prog. Mater. Sci. 11, 1–190 (1963).Google Scholar
  9. 9.
    J. P. Hirth and K. L. Moazed, Nucleation processes in thin film formation, Phys. Thin Films 4, 97–136 (1967).Google Scholar
  10. 10.
    Nucleation (A. C. Zettlemoyer, ed.), Marcel Dekker, New York (1969).Google Scholar
  11. 11.
    Nucleation Phenomena (A. C. Zettlemoyer, ed.), Elsevier, Amsterdam (1977).Google Scholar
  12. 12.
    R. Kern, G. Le Lay, and J. J. Metois, Basic mechanisms in the early stages of epitaxy, Curr. Top. Mater. Sci. 3, 131–419 (1979).Google Scholar
  13. 13.
    J. A. Venables, G. D. T. Spiller, and M. Hanbrücken, Nucleation and growth of thin films, Rep. Prog. Phys. 47, 399–459 (1984).Google Scholar
  14. 14.
    T. U. M. S. Murthy, M. Miyamoto, M. Shimbo, and J.-J. Nishizawa, Gas-phase nucleation during the thermal decomposition of silane in hydrogen, J. Cryst. Growth 33, 1–7 (1976).Google Scholar
  15. 15.
    D. Turnbull, Formation of crystal nuclei in liquid metals, J. Appl. Phys. 21, 1022–1028 (1950).Google Scholar
  16. 16.
    C. Devaud and D. Turnbull, Undercooling of molten silicon, Appl. Phys. Lett. 46, 844–845 (1985).Google Scholar
  17. 17.
    A. W. Adamson, Physical Chemistry of Surfaces, Chapter 7, pp. 339–342. Wiley, New York (1979).Google Scholar
  18. 18.
    I. N. Stranski and L. Krastanov, Zur Theorie der orientierten Ausscheidung von Ionenkristallen aufeinander, Sitzungsber. Akad. Wiss. Wien Math. Naturwiss. Kl. Abt. 2B 146, 797–810 (1938). [In German]Google Scholar
  19. 19.
    E. Bauer, Phänomenologische Theorie der Kristalabscheidung an Oberflächen, Z. Kristallogr. 110, 372–394 (1958).Google Scholar
  20. 20.
    R. S. Wagner and R. J. H. Voorhoeve, Adsorption and growth of cadmium on polycrystalline tungsten, J. Appl. Phys. 42, 3948–3959 (1971).Google Scholar
  21. 21.
    V. V. Voronkov, Supercooling at the face developing on a rounded crystallization front, Sov. Phys. Crystallogr. 17, 807–813 (1972).Google Scholar
  22. 22.
    A. A. Chernov, Crystallization, Annu. Rev. Mater. Sci. 3, 397–454 (1973).Google Scholar
  23. 23.
    Advances in Epitaxy and Endotaxy: Physical Problems of Epitaxy (H. G. Schneider and V. Ruth, eds.), VEB Deutscher Verlag für Grundstoffindustrie, Leipzig (1971).Google Scholar
  24. 24.
    Advances in Epitaxy and Endotaxy: Selected Chemical Problems (H. G. Schneider, V. Ruth, and T. Kormany, eds.), Akademiai Kiado, Budapest (1976).Google Scholar
  25. 25.
    D. W. Pashley, The study of epitaxy in thin surface films, Adv. Phys. 5, 173–240 (1956).Google Scholar
  26. 26.
    D. W. Pashley, The nucleation, growth, structure and epitaxy of thin surface films, Adv. Phys. 14, 327–410 (1965).Google Scholar
  27. 27.
    Single-Crystal Films (M. H. Francombe and H. Sato, eds.), Macmillan, New York (1964).Google Scholar
  28. 28.
    Thin Films and Interfaces (P. S. Ho and K. N. Tu, eds.), Proc. Mater. Res. Soc. Symp., Vol. 10, North-Holland, Amsterdam (1982); Thin Films and Interfaces-II (J. E. E. Baglin, D. R. Campbell, and W. K. Chu, eds.), Proc. Mater. Res. Soc. Symp., Vol. 25, North-Holland, Amsterdam (1984).Google Scholar
  29. 29.
    Thin Films-Interdiffusion and Reactions (J. M. Poate, K. N. Tu, and J. W. Mayer, eds.), Electrochemical Society Monographs, Wiley, New York (1978).Google Scholar
  30. 30.
    Proceedings of international conferences on thin films, see Special Issues of Thin Solid Films 83(1), 86(2/3) (1981); 91(1–4), 92(1–4) (1982); 93(1/2, 3/4) (1981, 1982); 124–126 (1984, 1985).Google Scholar
  31. 31.
    J. P. Hirth and K. L. Moazed, Nucleation processes in thin film formation, Phys. Thin Films 4, 97–136 (1967).Google Scholar
  32. 32.
    M. H. Frankombe and J. E. Johnson, The preparation and properties of semiconductor films, Phys. Thin Films 5, 143–235 (1969).Google Scholar
  33. 33.
    W. M. Feist, S. R. Steele, and D. W. Readey, The preparation of films by chemical vapor deposition, Phys. Thin Films 5, 237–322 (1969).Google Scholar
  34. 34.
    Crystal Growth and Epitaxy from the Vapour Phase, Special Issue of J. Cryst. Growth (E. Kaldis, ed.), Vol. 9, North-Holland, Amsterdam (1971).Google Scholar
  35. 35.
    Vapour Growth and Epitaxy, Special Issue of J. Cryst. Growth (G. W. Cullen, E. Kaldis, R. L. Parker, and M. Schieber, eds.), Vol. 17, North-Holland, Amsterdam (1972).Google Scholar
  36. 36.
    Vapour Growth and Epitaxy, Special Issue of J. Cryst. Growth (G. W. Cullen, E. Kaldis, R. L. Parker, and C. J. M. Rooymans, eds.), Vol. 31, North-Holland, Amsterdam (1975).Google Scholar
  37. 37.
    Vapour Growth and Epitaxy, Special Issue of J. Cryst. Growth (K. Takahashi, T. Arizumi, G. M. Blom, and E. Kaldis, eds.), Vol. 45, North-Holland, Amsterdam (1978).Google Scholar
  38. 38.
    Vapour Growth and Epitaxy, Special Issue of J. Cryst. Growth (M. Schieber, G. M. Blom, and E. Kaldis, eds.), Vol. 56, North-Holland, Amsterdam (1982).Google Scholar
  39. 39.
    Vapour Growth and Epitaxy, Special Issue of J. Cryst. Growth (M. Schieber, E. Kaldis, D. W. Shaw, G. B. Stringfellow, and L. Van der Berg, eds.), Vol. 70, North-Holland, Amsterdam (1984).Google Scholar
  40. 40.
    M. Gebhardt, Epitaxy, in: Crystal Growth: An Introduction (P. Hartman, ed.), pp. 105–142, NorthHolland, Amsterdam (1973).Google Scholar
  41. 41.
    L. S. Palatnik and I. I. Papirov, Orientirovannaya Kristallizatsiya (Oriented Crystallization), Metallurgia Press, Moscow (1964). [In Russian]Google Scholar
  42. 42.
    L. S. Palatnik and I. I. Papirov, Epitaksial’nye Plenki (Epitaxial Films), Nauka Press, Moscow (1971). [In Russian]Google Scholar
  43. 43.
    Epitaxial Growth, Parts A and B (J. W. Matthews, ed.), Academic Press, New York (1975).Google Scholar
  44. 44.
    M. S. Abrahams, Epitaxy, heteroepitaxy, and misfit dislocations, in: Crystal Growth and Characterization (R. Ueda and J. B. Mullin, eds.), pp. 187–196, North-Holland, Amsterdam (1975).Google Scholar
  45. 45.
    D. W. Shaw, Kinetics and mechanisms of epitaxial growth of semiconductors, in: Crystal Growth and Characterization (R. Ueda and J. B. Mullin, eds.), pp. 207–223, North-Holland, Amsterdam (1975).Google Scholar
  46. 46.
    B. A. Malykov, V. E. Korolev, V. S. Papkov, and M. A. Vorkunova, Crystallographic disorientation of epitaxial layers of silicon on sapphire, Sov. Phys. Crystallogr. 25, 257–258 (1980).Google Scholar
  47. 47.
    G. V. Chaplygin, Orientation relationships during heteroepitaxy, in: Extend. Ahstr. 6th Int. Conf. Cryst. Growth, Moscow, September 1980, Vol. 1, pp. 93–94.Google Scholar
  48. 48.
    A. B. Kuznetsov, S. A. Semiletov, and G. V. Chaplygin, Orientation of gallium nitride on sapphire, in: Rost Krist. (E. I. Givargizov and S. A. Grinberg, eds.), Vol. 15, pp. 14–23, Nauka Press, Moscow (1986). [Growth of Crystals, Vol. 15, pp. 13–22, Plenum Press, New York (1988)].Google Scholar
  49. 49.
    Landolt—Börnstein, New Series, Vol. 8 (M. Gebhardt and A. Neuchaus, eds.), Springer-Verlag, Berlin (1972).Google Scholar
  50. 50.
    E. Bauer and H. Poppa, Recent advances in epitaxy, Thin Solid Films 12, 167–185 (1972).Google Scholar
  51. 51.
    G. Le Lay and R. Kern, Physical methods used for the characterization of modes of epitaxial growth from the vapor phase, J. Cryst. Growth 44, 197–222 (1978).Google Scholar
  52. 51a.
    K. R. Milkove and S. L. Sass, Experimental observations on the growth of epitaxial films by the Volmer—Weber mechanism, in: Layered Structures, Epitaxy, and Interfaces (J. M. Gibson and L. R. Dawson, eds.), Proc. Mater. Res. Soc. Symp., 37, 83–88, Material Research Society Press, Pittsburgh (1985); K. R. Milkove, Theoretical considerations of the Volmer—Weber growth mechanism, 37, 89–95.Google Scholar
  53. 51b.
    M. H. Grabow and G. H. Gilmer, Thin film growth modes, wetting, and cluster nucleation, Surf. Sci. 194, 333–346 (1988).Google Scholar
  54. 52.
    J. A. Venables, Nucleation and growth of thin films: Recent progress, Vacuum 33, 701–705 (1983).Google Scholar
  55. 53.
    Y. Gotch and E. Yanokura, Growth of Ag crystals on Si(111) surface observed by SEM, J. Cryst. Growth 87, 408–414 (1988).Google Scholar
  56. 54.
    G. A. Bassett, Continuous observation of the growth of vacuum-evaporated metal films, in: Proc. Eur. Reg. Conf. Electron Microsc. (A. L. Houwink and B. J. Spit, eds.), Vol. 1, pp. 270–275, NorthHolland, Amsterdam (1961).Google Scholar
  57. 54a.
    Also: G. A. Bassett, Continuous electron microscope study of vacuum-evaporated metal films, in: Condensation and Evaporation of Solids (E. Ruther, P. Goldfinger, and J. P. Hirth, eds.), pp. 599–617, Gordon & Breach, New York (1964).Google Scholar
  58. 55.
    D. W. Pashley, M. J. Stowell, M. H. Jacobs, and T. J. Law, The growth and structure of gold and silver deposits formed by evaporation inside an electron microscope, Philos. Mag. 10, 127–158 (1964).Google Scholar
  59. 56.
    M. H. Jacobs, D. W. Pashley, and M. J. Stowell, The formation of imperfections in epitaxial gold films, Philos. Mag. 13, 129–156 (1966).Google Scholar
  60. 57.
    M. J. Stowell, Direct observations of epitaxial growth, Thin Solid Films 12, 341–354 (1972).Google Scholar
  61. 58.
    G. Honjo and K. Yagi, Studies of epitaxial growth of thin films by in situ electron microscope, Curr. Top. Mater. Sci. 6, 195–307 (1980).Google Scholar
  62. 59.
    G. A. Bassett, J. W. Menter, and D. W. Pashley, The nucleation, growth and microstructure of thin films, in: Structure and Properties of Thin Films (G. A. Neugebauer, J. B. Newkirk, and D. A. Vermilyea, eds.), pp. 11–45, Wiley, New York (1959).Google Scholar
  63. 60.
    A. Barna, P. B. Barna, and J. F. Pocza, Formation processes of vacuum deposited indium films and thermodynamic properties of submicroscopic particles observed by in situ electron microscopy, J. Vac. Sci. Technol. 6, 472–474 (1970).Google Scholar
  64. 61.
    K. L. Chopra, Thin Film Phenomena, McGraw—Hill, New York (1969).Google Scholar
  65. 62.
    A. Green, E. Bauer, R. L. Peck, and J. Dancy, Stages of epitaxial film formation, Krist. Tech. 5, 345–366 (1970).Google Scholar
  66. 63.
    M. J. Stowell and T. J. Law, The migration of double positioning boundaries during the growth of epitaxial (111) gold films, Phys. Status Solidi 16, 117–125 (1966).Google Scholar
  67. 64.
    G. I. Distler and V. P. Vlasov, Selective crystallization on electric surface structure elements of lithium fluoride crystals, Sov. Phys. Solid State 11(8), 2226–2229 (1969). [Translated from Russian.]Google Scholar
  68. 65.
    V. P. Vlasov and G. I. Distler, Lack of orientation in primary nuclei in epitaxial growth of AgCl and PbS, Sov. Phys. Crystallogr. 16, 578–582 (1971).Google Scholar
  69. 66.
    J. F. Pocza, A. Barna, and P. B. Barna, Die Ausbildung der Textur von vakuumkondensierten In-Schichten, Krist. Tech. 5, 315–321 (1970). [In German]Google Scholar
  70. 67.
    J. J. Métois, M. Gaugh, A. Masson, and R. Kern, Épitaxie: Phénomène de postnucléation [sur l’exemple des couches minces discontinues d’aluminium et d’or sur (100) KCl], Thin Solid Films 11, 205–218 (1972). [In French]Google Scholar
  71. 68.
    J. D. Filby and S. Nielsen, Single-crystal films of silicon on insulators, Brit. J. Appl. Phys. 18, 1357–1382 (1967).Google Scholar
  72. 69.
    H. M. Manasevit, A survey of the heteroepitaxial growth of semiconductor films on insulating substrates, J. Cryst. Growth 22, 125–148 (1974).Google Scholar
  73. 70.
    H. M. Manasevit and W. I. Simpson, Single-crystal silicon on a sapphire substrate, J. Appl. Phys. 35, 1349–1351 (1964).Google Scholar
  74. 71.
    A. Miller and H. M. Manasevit, Single crystal silicon epitaxy on foreign substrates, J. Vac. Sci. Technol. 3, 68–78 (1966).Google Scholar
  75. 72.
    H. M. Manasevit, R. L. Nolder, and L. A. Moudy, Heteroepitaxial silicon—aluminium oxide interface. III. Additional studies of the orientation relationships of single-crystal silicon on sapphire, Trans. Metall. Soc. AIME 242, 465–469 (1968).Google Scholar
  76. 73.
    Heteroepitaxial Semiconductors for Electronic Devices (G. W. Cullen and C. C. Wang, eds.), Springer-Verlag, Berlin (1978).Google Scholar
  77. 74.
    The Characterization and Optimization of Heteroepitaxial Silicon, Special Issue of J. Cryst. Growth, 58, 1–86 (1982).Google Scholar
  78. 75.
    A. G. Cullis and G. R. Booker, Electron microscope study of epitaxial silicon films on sapphire and diamond substrates, Thin Solid Films 31, 53–67 (1976).Google Scholar
  79. 76.
    M. S. Abrahams, C. J. Buiocchi, J. F. Corboy, and G. W. Cullen, Misfit dislocations in heteroepitaxial Si on sapphire, Appl. Phys. Lett. 28, 275–277 (1976).Google Scholar
  80. 77.
    M. S. Abrahams, C. J. Buiocchi, R. T. Smith, J. F. Corboy, J. Blanc, and G. W. Cullen, Early growth of silicon on sapphire. I. Transmission electron microscopy, J. Appl. Phys. 47, 5139–5150 (1976).Google Scholar
  81. 78.
    J. Blanc and M. S. Abrahams, Early growth of silicon on sapphire. II. Models, J. Appl. Phys. 47, 5151–5160 (1976).Google Scholar
  82. 79.
    T. Hayashi and S. Kurosawa, Electron microscope study of intrinsic and extrinsic stacking faults and twins in SOS at the early stage of epitaxial growth, J. Cryst. Growth 45, 426–434 (1978).Google Scholar
  83. 80.
    M. S. Abrahams and C. J. Buiocchi, Cross-sectional electron microscopy of silicon on sapphire, Appl. Phys. Lett. 27, 325–327 (1975).Google Scholar
  84. 81.
    F. A. Ponce and J. Aranovich, Imaging of the silicon on sapphire interface by high-resolution transmission electron microscopy, Appl. Phys. Lett. 38, 439–441 (1981);Google Scholar
  85. 81aa.
    F. A. Ponce, Fault-free silicon at the silicon/sapphire interface, Appl. Phys. Lett. 41, 1051–1053 (1983).Google Scholar
  86. 81ab.
    M. E. Twigg and E. D. Richmond, Microtwin morphology and volume fraction for silicon-onsapphire, J. Appl. Phys. 64, 3037–3041 (1988);Google Scholar
  87. 81ac.
    M. E. Twigg, J. G. Pellegrino, and E. D. Richmond, The structure of silicon thin films grown on sapphire by MBE, in: Silicon-on-Insulator and Buried Metals in Semiconductors (C. K. Chen, P. L. F. Hemment, J. C. Sturm, and L. Pfeiffer, eds.), Proc. Mater. Res. Soc. Symp. 107, 389–393, Material Research Society Press, Pittsburgh, 1988.Google Scholar
  88. 82.
    P. A. Larssen, Crystallographic match in epitaxy between silicon and sapphire, Acta Crystallogr. 20, 599–602 (1966).Google Scholar
  89. 83.
    C. Y. Ang and H. M. Manasevit, Residual stress in epitaxial silicon film on sapphire, Solid-State Electron. 8, 994–996 (1965).Google Scholar
  90. 84.
    J. Trilhe, J. Borel, and J. P. Duchemin, Characterization of the silicon-sapphire interface, J. Cryst. Growth 45, 439–445 (1978).Google Scholar
  91. 85.
    W. Kossel, Zur Theorie des Kristallwachstums, Nachr. Ges. Wiss. Göttingen Math. Phys. Kl. 135–143 (1927). [In German]Google Scholar
  92. 86.
    I. N. Stranski, Zur Theorie des Kristall-wachstums, Z. Phys. Chem. A136, 259–278 (1928). [In German] Originally published in 1927 in Annuaire de l’Université de Sofia. [In Bulgarian]Google Scholar
  93. 87.
    I. N. Stranski and R. Kaischew, Gleichgewichtsformen homöopolarer Kristalle, Z. Kristallogr. 78, 373–385 (1931). [In German]Google Scholar
  94. 88.
    F. C. Frank, The influence of dislocations on crystal growth, Discuss. Faraday Soc. 5, 48–54 (1949).Google Scholar
  95. 89.
    W. K. Burton, N. Cabrera, and F. C. Frank, The growth of crystals and the equilibrium structure of their surfaces, Philos. Trans. R. Soc. London Ser. A 243, 299–358 (1951).MathSciNetMATHGoogle Scholar
  96. 90.
    R. L. Parker, Crystal growth mechanisms: Energetics, kinetics, and transport, in: Solid State Physics: Advances in Research and Applications (H. Ehrenreich, F. Seitz, and D. Turnbull, eds.), Vol. 25, pp. 151–299, Academic Press, New York (1970).Google Scholar
  97. 91.
    A. A. Chernov, Growth kinetics and capture of impurities during gas phase crystallization, J. Cryst. Growth 42, 55–76 (1977).Google Scholar
  98. 92.
    E. I. Givargizov, Role of adsorption layer in chemical vapor deposition, J. Cryst. Growth 52, 194–198 (1981).Google Scholar
  99. 93.
    E. I. Givargizov, Growth of whiskers by the vapor-liquid-solid mechanism, Curr. Top. Mater. Sci. 1, 79–145 (1978).Google Scholar
  100. 94.
    J. W. Faust and H. F. John, The growth of semiconductor crystals from solutions using the twin-plane reentrant-edge mechanism, J. Phys. Chem. Solids 25, 1407–1415 (1964).Google Scholar
  101. 95.
    M. Kitamura, S. Hosoya, and I. Sunagawa, Re-investigation of the re-entrant corner effect in twinned crystals, J. Cryst. Growth 47, 93–99 (1979).Google Scholar
  102. 96.
    Shaped Crystal Growth (G. W. Cullen, T. Surek, and P. I. Antonov, eds.), Special Issue of J. Cryst. Growth 50 (1980).Google Scholar
  103. 97.
    Crystals: Growth, Properties, and Applications, Vol. 5 (J. Grabmaier, ed.), Springer-Verlag, Berlin (1981).Google Scholar
  104. 98.
    E. S. Greiner, J. A. Gutowski, and W. C. Ellis, Preparation of silicon ribbons, J. Appl. Phys. 32, 2489–2490 (1961).Google Scholar
  105. 98a.
    Also: R. S. Wagner and R. G. Treuting, Morphology and growth mechanism of silicon ribbons, J. Appl. Phys. 32, 2490–2491 (1961).Google Scholar
  106. 99.
    K. W. Keller, Surface microstructures and processes of crystal growth observed by electron microscopy, in: Crystal Growth and Characterization (R. Ueda and J. B. Mullin, eds.), pp. 361–372, North-Holland, Amsterdam (1975);Google Scholar
  107. 99a.
    K. W. Keller, Hill formation by two-dimensional nucleation as one form of crystal growth, J. Cryst. Growth 78, 509–518 (1986).Google Scholar
  108. 100.
    A. A. Chernov and G. F. Kopylova, Morphology of growth and evaporation surfaces of alkali halide crystals, Sov. Phys. Crystallogr. 22, 709–713 (1977).Google Scholar
  109. 101.
    E. Bauser and H. Strunk, Analysis of dislocations creating monomolecular growth steps, J. Cryst. Growth 51, 362–366 (1981);Google Scholar
  110. 101a.
    E. Bauser and H. Strunk, Dislocations as growth step sources in solution growth and their influence on interface structures, Thin Solid Films 93, 185–194 (1982).Google Scholar
  111. 102.
    J. N. Sherwood and T. Shripathi, Evidence for the role of pure edge dislocations in crystal growth, J. Cryst. Growth 88, 358–364 (1988).Google Scholar
  112. 103.
    A. Pavlovska, Surface melting, in: Collected Lecture Notes at International School of Crystallography—”New Crystallographic Perspectives in Materials Science” (A. Autier and E. Kaldis, eds.), pp. X.12–X.28, Erice, Trapani, Italy (1980).Google Scholar
  113. 104.
    D. Nenow, A. Pavlovska, and N. Karl, Singularity-nonsingularity surface transitions of vaporgrown highest purity diphenyl crystals, J. Cryst. Growth 67, 587–594 (1984).Google Scholar
  114. 105.
    K. A. Jackson, Mechanism of growth, in: Liquid Metals and Solidifcation, pp. 174–186, American Society for Metals, Cleveland (1958).Google Scholar
  115. 106.
    K. A. Jackson, D. R. Uhlmann, and J. D. Hunt, On the nature of crystal growth from the melt, J. Cryst. Growth 1, 1–36 (1967).Google Scholar
  116. 107.
    V. V. Voronkov and A. A. Chernov, Structure of crystal/ideal solution interface, in: Crystal Growth (H. S. Peiser, ed.), pp. 593–597, Pergamon Press, Elmsford, New York (1967).Google Scholar
  117. 108.
    S. K. Tung, The effects of substrate orientation on epitaxial growth, J. Electrochem. Soc. 112, 436–438.Google Scholar
  118. 109.
    L. G. Lavrentyeva, Yu. G. Kataev, Y. A. Moskovkin, and M. P. Yakubenya, Effect of substrate orientation on growth rate and doping level of vapor grown GaAs: Interval (111)A–(100)–(111)B, Krist. Tech. 6, 607–622 (1971).Google Scholar
  119. 110.
    L. G. Lavrentyeva, Anisotropic phenomena in GaAs growth processes in vapour deposition systems, Thin Solid Films 66, 71–84 (1980).Google Scholar
  120. 110a.
    Also: L. G. Lavrentyeva, Analysis of GaAs growth rate anisotropy in some CVD systems, Cryst. Res. Technol. 16, 661–666 (1981).Google Scholar
  121. 111.
    D. W. Shaw, Mechanisms in vapour epitaxy of semiconductors, in: Crystal Growth: Theory and Techniques (C. H. L. Goodman, ed.), Vol. 1, pp. 1–48, Plenum Press, New York (1974).Google Scholar
  122. 112.
    L. I. Tsinober, V. E. Khadzhi, L. A. Gordienko, and L. I. Litvin, Growth conditions and real structure of quartz crystals, in: Growth of Crystals 12, 73–84 (1981).Google Scholar
  123. 113.
    H. E. Buckley, Habit modification in crystals as a result of the introduction of impurities during growth, Discuss. Faraday Soc. 5, 243–254 (1949).Google Scholar
  124. 114.
    H. E. Buckley, Crystal Growth, Wiley, New York (1951); especially pp. 339–387 and 525–559.Google Scholar
  125. 115.
    A. A. Chernov, The spiral growth of crystals, Sov. Phys. Usp. 4, 116–170 (1961).Google Scholar
  126. 116.
    Adsorption et Croissance Crystalline, Colloq. CNRS No. 152, Edition du CNRS, Paris (1965).Google Scholar
  127. 117.
    E. V. Khamskii, Crystallization from Solutions, Consultants Bureau, New York (1969).Google Scholar
  128. 118.
    J. W. Mullin, Crystallization, Butterworths, London (1972); especially pp. 196–199 and 207–213.Google Scholar
  129. 119.
    A. A. Chernov, Modern Crystallography—III.: Crystal Growth, pp. 159–207, Springer-Verlag, Berlin (1984).Google Scholar
  130. 120.
    N. Cabrera and D. A. Vermilyea, Growth of crystals from solution, in: Growth and Perfection of Crystals (R. H. Doremus, B. W. Roberts, and D. Turnbull, eds.), pp. 393–410, Wiley, New York (1958).Google Scholar
  131. 121.
    A. A. Chernov, Effect of trace components on the growth rate of a crystal, in: Growth of Crystals 3, 31–34 (1962).Google Scholar
  132. 122.
    M. Bienfait, R. Boistelle, and R. Kern, Les morphodromes de NaCl en solution et l’adsorption d’ions étrangers, in: Adsorption et Croissance Crystalline, Colloq. CNRS No. 152, pp. 577–594, Edition du CNRS, Paris (1965). [In French]Google Scholar
  133. 123.
    R. Kern, Crystal growth and adsorption, Growth of Crystals 8, pp. 3–23, (1969).Google Scholar
  134. 124.
    E. I. Givargizov, Crystallization from the vapor via a liquid zone, in: A. A. Chernov (ed.), Modern Crystallography—III:: Crystal Growth, pp. 343–352, Springer-Verlag, Berlin (1984).Google Scholar
  135. 125.
    J. D. Filby, S. Nielsen, G. J. Rich, G. R. Booker, and J. M. Larcher, Investigation of epitaxial silicon layers grown in the presence of small quantities of gold, Philos. Mag. 16, 561–579 (1967).Google Scholar
  136. 126.
    C. W. White, S. R. Wilson, B. R. Appleton, and F. W. Young, Supersaturated substitutional alloys formed by ion implantation and pulsed laser annealing of group-III and group-V dopants in silicon, J. Appl. Phys. 51, 738–749 (1980).Google Scholar
  137. 127.
    C. W. White, B. R. Appleton, and S. R. Wilson, Supersaturated alloys, solute trapping, and zone refining, in: Laser Annealing of Semiconductors (J. M. Poate and J. W. Mayer, eds.), pp. 112–146, Academic Press, New York (1983).Google Scholar
  138. 128.
    C. W. White, D. M. Zehner, J. Narayan, O. W. Holland, B. R. Appleton, and S. R. Wilson, Dopant incorporation during rapid solidification, in: Laser-Solid Interactions and Transient Thermal Processing of Materials (J. Narayan, W. L. Brown, and R. A. Lemons, eds.), Proc. Mater. Res. Soc. Symp., Vol. 13, pp. 287–296, North-Holland, Amsterdam (1983).Google Scholar
  139. 129.
    J. Narayan, C. W. White, and O. W. Holland, Melting phenomena and impurity redistribution during pulsed laser irradiation of amorphous silicon layers, in: Energy Beam–Solid Interactions and Transient Thermal Processing (J. C. C. Fan and N. M. Johnson, eds.), Proc. Mater. Res. Soc. Symp., Vol. 23, pp. 179–188, North-Holland, Amsterdam (1984).Google Scholar
  140. 130.
    J. W. Rutter and B. Chalmers, A prismatic substructure formed during solidification of metals, Can. J. Phys. 31, 15–39 (1953).Google Scholar
  141. 131.
    B. Chalmers, Principles of Solidification, Wiley, New York (1964).Google Scholar
  142. 132.
    W. W. Mullins and R. F. Sekerka, Stability of a planar interface during solidification of a dilute binary alloy, J. Appl. Phys. 35, 444–451 (1964).Google Scholar
  143. 133.
    D. T. J. Hurle, Melt growth, in: Crystal Growth: An Introduction (P. Hartman, ed.), pp. 210–247, North-Holland, Amsterdam (1973).Google Scholar
  144. 134.
    J. C. Brice, The Growth of Crystals from Liquids, North-Holland, Amsterdam (1973).Google Scholar
  145. 135.
    W. Bardsley, D. T. J. Hurle, M. Hart, and A. R. Lang, Structural and chemical inhomogeneities in germanium single crystals grown under conditions of constitutional supercooling, J. Cryst. Growth 49, 612–630 (1980).Google Scholar
  146. 136.
    D. T. J. Hurle, On similarities between the theories of morphological instability of a growing binary alloy crystal and Rayleigh—Benard convective instability, J. Cryst. Growth 72, 738–742 (1985).Google Scholar
  147. 137.
    H. T. Minden, Constitutional supercooling in GaAs liquid phase epitaxy, J. Cryst. Growth 6, 228–236 (1970).Google Scholar
  148. 138.
    L. R. Dawson, Liquid phase epitaxy, Prog. Solid State Chem. 7, 117–139 (1972).Google Scholar
  149. 139.
    I. Crossely and M. B. Small, Some observations of the surface morphologies of GaAs layers grown by liquid phase epitaxy, J. Cryst. Growth 19, 160–168 (1973).Google Scholar
  150. 140.
    I. Kasai and D. W. Bassett, Liquid phase epitaxial growth of Pb 1-y Sn y Se, J. Cryst. Growth 27, 215–220 (1974).Google Scholar
  151. 141.
    K. A. Jackson, Crystal growth and phase formation, in: Surface Modification and Alloying by Laser, Ion, and Electron Beams, Proc. NATO Adv. Study Inst., Trevi, August 1981, pp. 51–79, Plenum Press, New York (1983).Google Scholar
  152. 142.
    L. Csepregi, E. F. Kennedy, T. J. Gallagher, and J. W. Mayer, Reordering of amorphous layers of Si implanted with 31 P, 75As, and 11B ions, J. Appl. Phys. 48, 4234–4240 (1977).Google Scholar
  153. 143.
    E. F. Kennedy, L. Csepregi, J. W. Mayer, and T. W. Sigmon, Influence of 16O, 12C, 14N, and noble gases on the crystallization of amorphous Si layers, J. Appl. Phys. 48, 4241–4246 (1977).Google Scholar
  154. 144.
    L. Csepregi, E. F. Kennedy, J. W. Mayer, and T. W. Sigmon, Substrate-orientation dependence of the epitaxial regrowth rate from Si-implanted Si, J. Appl. Phys. 49, 3906–3911 (1978).Google Scholar
  155. 145.
    J. S. Williams and M. W. Austin, Low-temperature epitaxial regrowth of ion-implanted amorphous GaAs, Appl. Phys. Lett. 36, 994–996 (1980).Google Scholar
  156. 146.
    J. F. Gibbons and T. W. Sigmon, Solid phase regrowth, in: Laser Annealing of Semiconductors (J. M. Poate and J. W. Mayer, eds.), pp. 325–381, Academic Press, New York (1982).Google Scholar
  157. 147.
    J. C. Bourgoin and R. Asomoza, Solid phase growth of silicon and germanium, J. Cryst. Growth 69, 489–498 (1984).Google Scholar
  158. 148.
    J. A. Roth and C. L. Anderson, Silicon epitaxy by solid-phase crystallization of deposited amorphous films, Appl. Phys. Lett. 31, 689–691 (1977).Google Scholar
  159. 149.
    Y. Shiraki, Y. Katayama, K. L. I. Kobayashi, and K. F. Komatsubara, Molecular beam and solidphase epitaxies of silicon under ultra-high vacuum, J. Cryst. Growth 45, 287–291 (1978).Google Scholar
  160. 150.
    M. G. Grimaldi, M. Maenpaa, B. M. Paine, M.-A. Nicolet, S. S. Lee, and W. F. Tseng, Epitaxial growth of amorphous Ge films deposited on single-crystal Ge, J. Appl. Phys. 52, 1351–1355 (1981).Google Scholar
  161. 151.
    I. G. Kaverina, V. V. Korobtsov, V. G. Zavodinskii, and A. V. Zotov, Solid-phase epitaxial growth anisotropy of vacuum-deposited amorphous silicon, Phys. Status Solidi 82a, 345–353 (1984).Google Scholar
  162. 152.
    L. Vescan, E. Kasper, O. Meyer, and M. Maier, Characterization of Ga-doped solid phase-MBE silicon, J. Cryst. Growth 73, 482–486 (1985).Google Scholar
  163. 153.
    D. C. Jacobson, J. M. Poate, and G. L. Olson, Zone refining and enhancement of solid phase epitaxial rates in Au-implanted amorphous Si, Appl. Phys. Lett. 48, 118–120 (1986).Google Scholar
  164. 154.
    C. Canali, S. U. Campisano, S. S. Lau, Z. L. Liau, and J. W. Mayer, Solid-phase epitaxial growth of Si through palladium silicide layer, J. Appl. Phys. 46, 2831–2836 (1975).Google Scholar
  165. 155.
    G. Majni, G. Ferrari, R. Ferrari, C. Canali, F. Catellani, G. Ottaviani, and G. Della Mea, The solid phase epitaxial growth of germanium through palladium germanide layer, Thin Solid Films 44, 193–199 (1977).Google Scholar
  166. 156.
    G. Majni and G. Ottaviani, Growth kinetics of {111} Si through an Al layer by solid phase epitaxy, J. Cryst. Growth 46, 119–124 (1979).Google Scholar
  167. 157.
    J. C. C. Fan, H. J. Zeiger, R. P. Gale, and R. L. Chapman, Solid-phase growth of large aligned grains during scanned laser crystallization of amorphous Ge films on fused silica, Appl. Phys. Lett. 36, 158–160 (1980).Google Scholar
  168. 158.
    H. J. Leamy, W. L. Brown, G. K. Celler, G. Foti, G. H. Gilmer, and J. C. C. Fan, Explosive crystallization of amorphous germanium, Appl. Phys. Lett. 38, 137–139 (1981).Google Scholar
  169. 159.
    G. Auvert, D. Bensahel, A. Perio, V. T. Nguen, and G. A. Rozgonyi, Explosive crystallization of a-Si films in both the solid and liquid phases, Appl. Phys. Lett. 39, 724–726 (1981).Google Scholar
  170. 160.
    O. Bostanjoglo, Time-resolved TEM of pulsed crystallization of amorphous Si and Ge films, Phys. Status Solidi 70a, 473–481 (1982).Google Scholar
  171. 161.
    L. N. Aleksandrov and F. L. Edelman, Shock crystallization of films, Phys. Status Solidi 76a, 409–427 (1982).Google Scholar
  172. 162.
    J. Narayan, S. J. Pennycook, D. Fathy, and O. W. Holland, Explosive recrystallization during pulsed laser irradiation, J. Vac. Sci. Technol. A2, 1495–1497 (1984).Google Scholar
  173. 163.
    P. Fontaine, J. Marfaing, W. Marine, F. Salvan, and B. Mutaftischiev, Instabilities of crystallization in amorphous germanium under pulsed laser irradiation, in: Laser Processing and Diagnostics (D. Bauerle, ed.), pp. 19–24, Springer-Verlag, Berlin (1984).Google Scholar
  174. 164.
    W. Wagner, H.-D. Geiler, and G. Götz, Time-resolved investigation of large-area explosive crystallization of amorphous silicon layers, Phys. Status Solidi 92a, 413–420 (1985).Google Scholar
  175. 165.
    K. H. Heinig and H.-D. Geiler, Phenomenological theory of explosive solid phase crystallization of amorphous silicon. I. Stationary conditions, Phys. Status Solidi 92a, 421–430 (1985);Google Scholar
  176. 165a.
    K. H. Heinig and H.-D. Geiler, Phenomenological theory of explosive solid phase crystallization of amorphous silicon. II. Dynamical processes, Phys. Status Solidi 93a, 99–104 (1986).Google Scholar
  177. 166.
    Physical Metallurgy (R. W. Cahn and P. Haasen, eds.), North-Holland, Amsterdam (1983).Google Scholar
  178. 167.
    R. A. Laudise, The Growth of Single Crystals, Chapter 4, Prentice–Hall, Englewood Cliffs, New Jersey (1970).Google Scholar
  179. 168.
    Recrystallization, Grain Growth, and Texture (H. Margolin, ed.), American Society for Metals, Metals Park, Ohio (1966).Google Scholar
  180. 169.
    L. E. Murr, Interfacial Phenomena in Metals and Alloys, pp. 322–337, Addison–Wesley, Reading, Massachusetts (1975).Google Scholar
  181. 170.
    H. Gleiter, Recrystallization, in: Interfacial Aspects of Phase Transformations (B. Mutaftischiev, ed.), pp. 605–619, Reidel, Dordrecht (1982).Google Scholar
  182. 171.
    R. W. Cahn, Recovery and recrystallization, in: Physical Metallurgy (R. W. Cahn and P. Haasen, eds.), pp. 1595–1671, North-Holland, Amsterdam (1983).Google Scholar
  183. 172.
    C. V. Thompson, Secondary grain growth in thin films of semiconductors: Theoretical aspects, J. Appl. Phys. 58, 763–772 (1985).Google Scholar
  184. 173.
    C. V. Thompson, Solid phase processes for semiconductors-on-insulators, in: Energy Beam–Solid Interactions and Transient Thermal Processing (D. K. Biegelsen, G. A. Rozgonyi, and C. V. Shank, eds.), Mater. Res. Soc. Symp. Proc., Vol. 35, pp. 711–719, North-Holland, Amsterdam (1985).Google Scholar
  185. 174.
    A. Gangulee and F. M. D’Heurle, Anomalous large grains in alloyed aluminium thin films. I. Secondary grain growth in aluminium–copper films, Thin Solid Films 12, 399–402 (1972);Google Scholar
  186. 174a.
    A. Gangulee and F. M. D’Heurle, Anomalous large grains in alloyed aluminium thin films. II. Electromigration and diffusion in thin films with very large grains, Thin Solid Films 16, 227–236 (1973).Google Scholar
  187. 175.
    C. V. Thompson and H. I. Smith, Surface-energy-driven secondary grain growth in ultrathin (< 100 nm) films of silicon, Appl. Phys. Lett. 44, 603–605 (1984).Google Scholar
  188. 176.
    C. C. Wong, H. I. Smith, and C. V. Thompson, Surface-energy-driven-secondary grain growth in thin Au films, Appl. Phys. Lett. 48, 335–337 (1986).Google Scholar
  189. 177.
    S. M. Garrison, R. C. Cammarata, C. V. Thompson, and H. I. Smith, Surface-energy-driven grain growth during rapid thermal annealing (< 10 s) of thin silicon films, J. Appl. Phys. 61, 1652–1655 (1987).Google Scholar
  190. 178.
    Y. Wada and S. Nishimatsu, Grain growth mechanism of heavily phosphorus-implanted polycrystalline silicon, J. Electrochem. Soc. 125, 1499–1504 (1978).Google Scholar
  191. 179.
    Grain Boundaries in Semiconductors (H. J. Leamy, G. E. Pike, and C. H. Seager, eds.), Proc. Mater. Res. Soc. Symp., Vol. 5, North-Holland, Amsterdam (1982).Google Scholar
  192. 180.
    L. Mei, M. Rivier, Y. Kwark, and R. W. Dutton, Grain-growth mechanisms in polysilicon, J. Electrochem. Soc. 129, 1791–1795 (1982).Google Scholar
  193. 181.
    R. Angelucci, M. Severi, and S. Solmi, Effect of impurities on the grain growth of chemical vapor deposited polycrystalline silicon films, Mater. Chem. Phys. 9, 235–245 (1984).Google Scholar
  194. 182.
    H.-J. Kim and C. V. Thompson, Compensation of grain growth enhancement in doped silicon films, Appl. Phys. Lett. 48, 399–401 (1986).Google Scholar
  195. 183.
    J. M. Fairfield and B. J. Masters, Self-diffusion in intrinsic and extrinsic silicon, J. Appl. Phys. 38, 3148–3154 (1967).Google Scholar
  196. 184.
    R. B. Fair, Concentration profiles of diffused dopants in silicon, in: Impurity Doping Processes in Silicon (F. F. Y. Wang, ed.), pp. 315–442, North-Holland, Amsterdam (1981).Google Scholar
  197. 185.
    S. S. Lau and W. F. van der Weg, Solid phase epitaxy, in: Thin Films—Interdiffusion and Reactions (J. M. Poate, K. N. Tu, and J. W. Mayer, eds.), pp. 433–480, Electrochemical Society Monographs, Wiley, New York (1978).Google Scholar
  198. 186.
    M. M. Mandurah, K. C. Saraswat, C. R. Helms, and T. I. Kamins, Dopant segregation in polycrystalline silicon, J. Appl. Phys. 51, 5755–5763 (1980).Google Scholar
  199. 187.
    J. E. Geguzin, Physik des Sinterns, VEB Deutscher Verlag für Grundstoffindustrie, Leipzig (1973). [In German]Google Scholar
  200. 188.
    Materials Science Research series, Vol. 6, Sintering and Related Phenomena (1973); Vol. 10, Sintering and Catalysis (1978); Vol. 13, Sintering Processes (1980) (G. C. Kuczynski, ed.), Plenum Press, New York.Google Scholar
  201. 189.
    V. F. Lenel, Powder Metallurgy—Principles and Applications, Metal Powder Industries Federation, Princeton, New Jersey (1980).Google Scholar
  202. 190.
    H. E. Exner and E. Arzt, Sintering processes, in: Physical Metallurgy (R. W. Cahn and P. Haasen, eds.), pp. 1885–1912, North-Holland, Amsterdam (1983).Google Scholar
  203. 191.
    W. A. Kaysser and G. Petrow, Present state of liquid phase sintering, Powder Metall. 28, 145–150 (1985).Google Scholar
  204. 192.
    Proceedings of the Symposium on Activated and Liquid Phase Sintering of Refractory Metals and Their Compounds, Metall. Trans. 15A, 1065–1116 (1984).Google Scholar
  205. 193.
    F. Vnuk, Preparation of compact a-tin specimens, J. Cryst. Growth 48, 486–488 (1980).Google Scholar
  206. 194.
    G. C. Vezzoli and M. Otooni, β—2192 a transformation in tin as studied by electrical resistance and optical reflectance under vacuum and at high pressure, J. Cryst. Growth 68, 705–720 (1984).Google Scholar
  207. 195.
    A. R. Verma and P. Krishna, Polymorphism and Polytypism in Crystals, Wiley, New York (1966).Google Scholar
  208. 196.
    A. J. Baronnet, Some aspects of polytypism in crystals, Prog. Cryst. Growth Characterization 1, 151–211 (1978).Google Scholar
  209. 197.
    Crystal Growth and Characterization of Polytype Structures (P. Krishna, ed.), Special Issue of Prog. Cryst. Growth Characterization 7, 1–502 (1983).Google Scholar
  210. 198.
    A. L. Roitburd, On domain structure of crystals formed in solid state, Sov. Phys. Solid State 10, 2870–2878 (1969).Google Scholar
  211. 199.
    A. L. Roitburd, Domain structure caused by internal stresses in heterophase solids, Phys. Status Solidi 16a, 329–338 (1973).Google Scholar
  212. 200.
    C. M. Wayman, Introduction to the Crystallography of Martensitic Transformations, Macmillan, New York (1964); see also Phase transformations, nondiffusive, Physical Metallurgy (R. W. Cahn and P. Haasen, eds.), pp. 1031–1074, North-Holland, Amsterdam (1983).Google Scholar
  213. 201.
    A. L. Roitburd, The theory of the formation of a heterophase structure in phase transformations in solids, Sov. Phys. Usp. 17, 326–344 (1974).Google Scholar
  214. 202.
    A. L. Roitburd, Martensitic transformation as a typical phase transformation in solids, in: Solid State Physics: Advances in Research and Applications (H. Ehrenreich, F. Seitz, and D. Turnbull, eds.), Vol. 33, pp. 317–390, Academic Press, New York (1978).Google Scholar
  215. 203.
    A. L. Roitburd and G. V. Kurdjumov, The nature of martensitic transformations, Mater. Sci. Eng. 39, 141–167 (1979).Google Scholar
  216. 204.
    G. Wulff, Zur Frage der Geschwindigkeit des Wachstums und der Auflösung der Kristallflächen, Z. Kristallogr. 34, 449–530 (1901). [In German]Google Scholar
  217. 205.
    R. J. Jaccodine, Surface energy of germanium and silicon, J. Electrochem. Soc. 110, 524–527 (1963).Google Scholar
  218. 206.
    C. Herring, Atomistic theory of metallic surfaces, in: Metal Interfaces, pp. 1–19, American Society for Metals, Cleveland (1951).Google Scholar
  219. 207.
    C. Herring, Some theorems on the free energies of crystal surfaces, Phys. Rev. 82, 87–93 (1951).MATHGoogle Scholar
  220. 208.
    C. Herring, The use of classic macroscopic concept in surface energy problems, in: Structure and Properties of Solid Surfaces (R. Gomer and G. S. Smith, eds.), pp. 5–72, University of Chicago Press, Chicago (1953).Google Scholar
  221. 209.
    B. Honigmann, Gleichgewichts- und Wachstumsformen von Kristallen, Steinkopff, Darmstadt (1958). [In German]Google Scholar
  222. 210.
    R. Kaischew, Application of the method of medium separation work in the theory of crystal growth and of the formation of crystal nucleus, Fortschr. Mineral. 38, 7–21 (1960).Google Scholar
  223. 211.
    S. Toshev, Equilibrium forms, in: Crystal Growth: An Introduction (P. Hartman, ed.), pp. 328–341, North-Holland, Amsterdam (1973).Google Scholar
  224. 212.
    P. Hartman and W. G. Perdok, On the relations between structure and morphology of crystals, Part I, Acta Crystallogr. 8, 49–52 (1955);Google Scholar
  225. 212a.
    P. Hartman and W. G. Perdok, On the relations between structure and morphology of crystals, Part II, Acta Crystallogr8, 521–524; (1955);Google Scholar
  226. 212b.
    P. Hartman and W. G. Perdok, On the relations between structure and morphology of crystals, Part III, Acta Crystallogr 8, 525–529. (1955);Google Scholar
  227. 213.
    P. Hartman, Structure, growth and morphology of crystals, Z. Kristallogr. 119, 65–78 (1963).Google Scholar
  228. 214.
    P. Hartman, Crystal form and crystal structure, in: Physics and Chemistry of the Organic Solid State (D. Fox, M. M. Labes, and A. Weissberger, eds.), Vol. 1, pp. 369–409, Interscience, New York (1963).Google Scholar
  229. 215.
    P. Hartman, The dependence of crystal morphology on crystal structure, Growth of Crystals 7, 3–18 (1969).Google Scholar
  230. 215a.
    P. Hartman, Modern PBC theory, in: Morphology of Crystals (I. Sunagawa, ed.), pp. 269–319, Reidel/Terra Sci. Publ., Dordrecht/Tokyo (1988).Google Scholar
  231. 216.
    P. Hartman, Structure and morphology, in: Crystal Growth: An Introduction (P. Hartman, ed.), pp. 367–402, North-Holland, Amsterdam (1973).Google Scholar
  232. 217.
    C. S. Strom, Graphical presentation of crystal habit, J. Cryst. Growth 46, 185–188 (1979).Google Scholar
  233. 218.
    C. S. Strom and W. M. M. Heijnen, Computerized PBC analysis of weddellite, J. Cryst. Growth 51, 534–540 (1980).Google Scholar
  234. 219.
    W. M. M. Heijnen and F. B. Van Duijneveldt, The theoretical growth morphology of calcium oxalate dihydrate, J. Cryst. Growth 67, 324–333 (1984).Google Scholar
  235. 220.
    P. Hartman and P. Bennema, The attachment energy as a habit controlling factor. I. Theoretical considerations, J. Cryst. Growth 49, 145–156 (1980).Google Scholar
  236. 221.
    P. Hartman, The attachment energy as a habit controlling factor. II. Application to anthracene, tin tetraiodide and orthorhombic sulphur, J. Cryst. Growth 49, 157–165 (1980);Google Scholar
  237. 221a.
    P. Hartman, The attachment energy as a habit controlling factor. III. Application to corundum, J. Cryst. Growth 49, 166–170 (1980).Google Scholar
  238. 222.
    F. Kersten and C. Hamann, Zur Gleichgewichts- und Wachstumsform von β-KupferphthalocyaninEinkristallen, Krist. Tech. 11, 1101–1111 (1976). [In German]Google Scholar
  239. 223.
    M. Franchini-Angela and D. Aquilano, Growth morphology of weddellite CaC2O4 • 2xH2O, J. Cryst. Growth 47, 719–726 (1979).Google Scholar
  240. 224.
    W. Franke and H. Ghobarkar, Contribution to the habit of hydrothermally grown corundum, Cryst. Res. Technol. 16, 1229–1232 (1981).Google Scholar
  241. 225.
    E. Schönherr and E. Winckler, Surface morphology and facet analysis of vapor grown GeS single crystals, J. Cryst. Growth 55, 582–590 (1981).Google Scholar
  242. 226.
    C. Rinaudo and R. Boistelle, Theoretical and experimental growth morphologies of sodium urate crystals, J. Cryst. Growth 57, 432–442 (1982).Google Scholar
  243. 227.
    D. Aquilano, M. Franchini-Angela, M. Rubbo, G. Mantovani, and G. Vaccari, Growth morphology of polar crystals: A comparison between theory and experiment in sucrose, J. Cryst. Growth 61, 369–376 (1983). Also: J. Cryst. Growth 74, 10–20 (1986); 83, 77–83 (1987).Google Scholar
  244. 228.
    C. F. Woensdregt and P. Hartman, Structural morphology of cotunnite, PbCl2, laurionite, Pb(OH) Cl, and SbSI, J. Cryst. Growth 87, 561–566 (1988).Google Scholar
  245. 229.
    C. Rottman and M. Wortis, Equilibrium crystal shapes for lattice models with nearest- and nextnearest-neighbor interactions, Phys. Rev. B29, 328–339 (1984).MathSciNetGoogle Scholar
  246. 230.
    C. Rottman, M. Wortis, J. C. Heyraud, and J. J. Metois, Equilibrium shapes of small lead crystals: Observation of Pokrovsky—Talarov critical behavior, Phys. Rev. Lett. 52, 1009–1012 (1984).Google Scholar
  247. 231.
    C. Jayaprakash and W. F. Saam, Thermal evolution of crystal shapes: The FCC crystal, Phys. Rev. B30, 3916–3928 (1984).Google Scholar
  248. 231a.
    Also: C. Jayaprakash, C. Rottman, and W. F. Saam, Simple model for crystal shapes: Step—step interactions and facet edges, Phys. Rev. B30, 6549–6554 (1984).Google Scholar
  249. 232.
    H. J. Schulz, Equilibrium shape of crystals, J. Phys. (Paris) 46, 257–269 (1985).Google Scholar
  250. 233.
    C. Rottman and M. Wortis, Statistical mechanics of equilibrium crystal shapes: Interfacial phase diagrams and phase transitions, Phys. Rep. 103, 59–79 (1984).MathSciNetGoogle Scholar
  251. 234.
    J. W. W. Frenken and J. F. van der Veen, Observation of surface melting, Phys. Rev. Lett. 54, 134–137 (1985).Google Scholar
  252. 235.
    R. Boistelle and F. Abbona, Morphology, habit and growth of newberyite crystals (MgHPO3 • 3H2O), J. Cryst. Growth 54, 275–295 (1981).Google Scholar
  253. 235a.
    Also: F. Abbona and R. Boistelle, Nucleation of struvite (MgNH4 PO4 • 6H2O) single crystals and aggregates, Cryst. Res. Technol. 20, 133–140 (1985).Google Scholar
  254. 236.
    M. Van Panhuys-Sigler, P. Hartman, and C. F. Woensdregt, Habit changes of lead chloride, PbCl2, caused by growth from pure aqueous solution and the effect of KCl, NH4Cl, CdCl2 and HCl as additives, J. Cryst. Growth 87, 554–560 (1988).Google Scholar
  255. 237.
    P. Hartman, Le cote cristallographique du l’adsorption vu par le changement de facies, in: Adsorption et Croissance Crystalline, Colloq. CNRS No. 152, pp. 477–513, Edition du CNRS, Paris (1965). [In French]Google Scholar
  256. 238.
    R. J. Davey and J. W. Mullin, A mechanism for the habit modification of ammonium dihydrogen phosphate crystals in the presence of ionic species in aqueous solution, Krist. Tech. 11, 229–233 (1976).Google Scholar
  257. 239.
    R. Gaedeke, F. Wolf, and G. Bernhardt, On the influence on Tracht and habit of urea crystals, Krist. Tech. 14, 913–922 (1979);Google Scholar
  258. 239a.
    R. Gaedeke, F. Wolf, and G. Bernhardt, On the influence on Tracht and habit of urea crystals, Krist. Tech. 15, 557–564 (1980).Google Scholar
  259. 240.
    K. V. Kurien and M. A. Ittyachen, Impurity effects on the habits of gel grown BaMnO4 crystals, J. Mater. Sci. Lett. 4, 75–79 (1985).Google Scholar
  260. 241.
    E. Kirkova and R. Nikolaeva, Influence of phenol on the habit of NaCl crystals, Krist. Tech. 6, 741–746 (1971).Google Scholar
  261. 242.
    J. D. Birchall and R. J. Davey, The crystallization of NaCl from aqueous solution in the presence of polysaccharides, J. Cryst. Growth 54, 323–329 (1981).Google Scholar
  262. 243.
    A. E. Glikin, Effect of flux components on CaF2 crystal habit, J. Cryst. Growth 52, 98–103 (1981).Google Scholar
  263. 244.
    N. Garti, C. L. Leci, and S. Sarig, The effect of solvents on crystal habit of DTBB, J. Cryst. Growth 54, 227–231 (1981).Google Scholar
  264. 245.
    R. J. Davey, J. W. Mullin, and M. J. I. Whiting, Habit modification of succinic acid crystals grown from different solvents, J. Cryst. Growth 58, 304–312 (1982).Google Scholar
  265. 246.
    H. Hashimoto, F. Hayashi, S. Nakajima, T. Mizuno, T. Uematsu, K. Murumatsu, M. Shiota, and M. Shimazu, Morphology of ZnO crystals grown in molten hydrous alkali solutions, J. Cryst. Growth 60, 159–162 (1982).Google Scholar
  266. 247.
    K. Kodaira, Y. Iwase, A. Tsunashima, and T. Matsushita, High pressure hydrothermal synthesis of beryl crystals, J. Cryst. Growth 60, 172–174 (1982).Google Scholar
  267. 248.
    H. K. Henisch, Crystal Growth in Gels, Pennsylvania State University Press, University Park (1970).Google Scholar
  268. 249.
    V. P. Bhatt, R. M. Patel, and C. F. Desai, Gel growth and morphology of KClO3 single crystals, Cryst. Res. Technol. 20, K67—K70 (1985).Google Scholar
  269. 250.
    J. W. Faust, H. F. John, and C. Fritchard, Influence of solvent and impurities on habit and morphology of semiconductor crystals, J. Cryst. Growth 3/4, 321–326 (1978).Google Scholar
  270. 251.
    B. Simon, Influence of the direction of the solution flow on the morphology of NaClO3 crystals, J. Cryst. Growth 61, 167–169 (1983).Google Scholar
  271. 252.
    V. W. Keller and J. Hallet, Influence of air velocity on the habit of ice crystal growth from the vapor, J. Cryst. Growth 60, 91–106 (1982).Google Scholar
  272. 253.
    J. Hallett, Ventilation and growth forms of crystals, Abstracts of the International Seminar on Morphology and Growth Unit of Crystals, Japan, August 1985, pp. 26–27.Google Scholar
  273. 254.
    W. A. Kaysser, M. Zivkovic, and G. Petzow, Shape accommodation during grain growth in the presence of a liquid phase, J. Mater. Sci. 20, 578–584 (1985).Google Scholar
  274. 255.
    Y. Saito, Crystal structure and habit of silicon and germanium particles grown in argon, J. Cryst. Growth 47, 61–72 (1978).Google Scholar
  275. 256.
    R. Lacmann, W. Franke, and R. Heimann, The dissolution forms of single crystal spheres. I. Theory for the molecular-kinetics interpretation, J. Cryst. Growth 26, 107–116 (1974).Google Scholar
  276. 257.
    R. Lacmann, R. Heimann, and W. Franke, The dissolution forms of single crystal spheres. II. Theory for the molecular-kinetics interpretation, J. Cryst. Growth 26, 117–121 (1974).Google Scholar
  277. 258.
    W. Franke, R. Heimann, and R. Lacmann, The dissolution forms of single crystal spheres. III. Dissolution forms of Ge and Si, J. Cryst. Growth 28, 145–150 (1975).Google Scholar
  278. 259.
    R. Heimann, W. Franke, and R. Lacmann, Dissolution forms of single-crystal spheres of rutile, J. Cryst. Growth 13/14, 202–206 (1971). Also: J. Cryst. Growth 18, 61–69 (1973); 21, 315–316 (1974); 28, 151–156, 157–161 (1975).Google Scholar
  279. 260.
    A. E. Smirnov, A. A. Urusovskaya, V. G. Govorkov, and G. V. Berezhkova, Thermochemical dissolution of corundum, J. Mater. Sci. 16, 1071–1080 (1981).Google Scholar
  280. 261.
    R. B. Heimann and W. Tolksdorf, Dissolution forms of gadolinium gallium garnet and yttrium iron garnet obtained in lead oxide/boron trioxide flux, J. Cryst. Growth 62, 75–86 (1983).Google Scholar
  281. 262.
    E. Hartmann, E. Beregi, and E. Sterk, The dissolution forms of LiFe5 O8 single crystals, J. Cryst. Growth 64, 546–548 (1983). Also: J. Cryst. Growth 65, 562–567 (1983); 71, 191–196 (1985); 74, 462–464, 79, 825–828 (1986).Google Scholar
  282. 263.
    G. G. Lemmlein, On experimental realization of equilibrium shape of crystals, Dokl. Akad. Nauk SSSR 98, 973–974 (1954). [In Russian]MathSciNetGoogle Scholar
  283. 264.
    M. O. Kliya, Realization of droplet system crystal-solution, Dokl. Akad. Nauk SSSR 100, 259–262 (1955). [In Russian]Google Scholar
  284. 265.
    B. Honigmann and I. N. Stranski, Trachtänderung von Hexamethylentetraminkristallen bei konstanter Temperatur und unter dem Einfluss von Temperaturschwankungen, Z. Elektrochem. 56, 338–342 (1952). [In German]Google Scholar
  285. 266.
    M. Bienfait and R. Kern, Germination crystalline dans une phase de petite dimension. Application à la condensation de la vapeur d’eau, J. Chim. Phys. 60, 1243–1250 (1963). [In French] Also: Establissement de la forme d’équilibre d’un cristal (Méthode de Lemmlein-Kliya), Bull. Soc. Fr. Mineral. Cristallogr. 87, 604–613 (1964). [In French]Google Scholar
  286. 267.
    P. Hartman, The equilibrium form in a phase of small dimensions, in: Crystal Growth: An Introduction (P. Hartman, ed.), pp. 358–366, North-Holland, Amsterdam (1973).Google Scholar
  287. 268.
    S. Budurov and N. Stojcev, Über die Gleichgewichtsform des Kadmiums und Zinks, C. R. Acad. Bulg. Sci. 16, 397–400 (1963). [In German]Google Scholar
  288. 269.
    N. Stojcev, S. Budurov, G. Kirov, and I. Jurukova, Über die Elektrokristallisation des Wismuts, Krist. Tech. 1, 213–218 (1966). [In German]Google Scholar
  289. 270.
    N. Stojcev, S. Budurov, and S. Peneva, Über die Wachstumsformen von Cäsiumkristallen aus der Gasphase, Krist. Tech. 4, 5–9 (1969). [In German]Google Scholar
  290. 271.
    R. Kaishev and C. Nanev, The growth and equilibrium shapes of zinc single crystals, Growth of Crystals 7, 19–24 (1969).Google Scholar
  291. 272.
    J. M. Bermond and J. A. Venables, A model for the growth shape of crystallites on surfaces, J. Cryst. Growth 64, 239–256 (1983).Google Scholar
  292. 273.
    D. Kashchiev, Growth shape of crystallites in thin film deposition, J. Cryst. Growth 67, 559–565 (1984).Google Scholar
  293. 274.
    J. C. Heyraud and J. J. Metois, Establishment of the equilibrium shape of metal crystallites on a foreign substrate: Gold on graphite, J. Cryst. Growth 50, 571–574 (1980). Also: J. C. Heyraud and J. J. Metois, Equilibrium shape of gold crystallites on a graphite cleavage surface: Surface energies and interfacial energy, Acta Metall. 28, 1787–1789 (1980).Google Scholar
  294. 275.
    J. J. Metois, G. D. T. Spiller, and J. A. Venables, Lead on graphite: Equilibrium shape, crystal growth, melting and the early stages of oxidation, Philos. Mag. 46, 1015–1022 (1982).Google Scholar
  295. 276.
    J. J. Metois and J. C. Heyraud, Mechanisms of morphological change during the establishment of the equilibrium shape: Lead on graphite, J. Cryst. Growth 57, 487–492 (1982).Google Scholar
  296. 277.
    J. C. Heyraud and J. J. Metois, Equilibrium shape and temperature: Lead on graphite, Surf. Sci. 128, 334–342 (1983). Also: J. C. Heyraud and J. J. Metois, Growth shapes of metallic crystals and roughening transition, J. Cryst. Growth 82, 269–273 (1987).Google Scholar
  297. 278.
    J. C. Heyraud and J. J. Metois, Equilibrium shape of an ionic crystal in equilibrium with its vapor (NaCl), J. Cryst. Growth 84, 503–508 (1987).Google Scholar
  298. 279.
    J. W. Matthews, C. J. Kircher, and R. E. Drake, Oxides formed on the (111) surface of lead. I. Orthorhombic PbO or massicot, Thin Solid Films 42, 69–80 (1977); II. Red PbO or litharge, Thin Solid Films 47, 95–108 (1977).Google Scholar
  299. 280.
    G. A. Wolff, Faces and habits of diamond type crystals, Am. Mineral. 41, 60–66 (1956).Google Scholar
  300. 281.
    I. N. Stranski, Forms of equilibrium of crystals, Discuss. Faraday Soc. 5, 13–21 (1949).Google Scholar
  301. 282.
    C. H. J. van den Brekel, Growth rate anisotropy and morphology of autoepitaxial silicon films from SiCl4, J. Cryst. Growth 23, 259–266 (1974).Google Scholar
  302. 283.
    T. F. Ciszek, Crystallographic growth forms of silicon on a free melt surface, J. Cryst. Growth 132, 422–427 (1985).Google Scholar
  303. 284.
    Shaped Crystal Growth (G. W. Cullen, T. Surek, and P. I. Antonov, eds.), Special Issue of J. Cryst. Growth 50(1) (1980).Google Scholar
  304. 285.
    R. Lacmann, Springer Tracts Mod. Phys. 44, 1 (1968).Google Scholar
  305. 286.
    D. Knoppik and A. Lösch, Surface structure and degree of coarsening of { 111 } NaCl surfaces near the thermodynamic equilibrium between crystal and vapour, J. Cryst. Growth 34, 332–336 (1976).Google Scholar
  306. 287.
    D. Knoppik and H.-C. Bartscherer, { 110 } surface structure and degree of coarsening of NaCl crystals annealed near the thermodynamic equilibrium of crystal and vapour, J. Cryst. Growth 36, 342–344 (1976).Google Scholar
  307. 288.
    D. Knoppik and F.-P. Penningsfeld, Quantitative evaluation of evaporation structures of {100}, { 110}, and { 111 } NaCl surfaces annealed in a vacuum between 400 and 800°C, J. Cryst. Growth 37, 69–75 (1977).Google Scholar
  308. 289.
    D. W. Shaw, Morphology analysis in localized crystal growth and dissolution, J. Cryst. Growth 47, 509–517 (1979).Google Scholar
  309. 290.
    M. Ogita, T. Caroll, J. Wei, J. van der Spiegel, and J. N. Zemel, Use of gold films as masks for a KOH preferential etch, Thin Solid Films 120, L79–L81 (1984).Google Scholar
  310. 291.
    W. J. P. Van Enckevort and L. J. Giling, The influence of adsorption and step reconstruction on the growth and etching vectors of silicon (111), J. Cryst. Growth 45, 90–96 (1978).Google Scholar
  311. 292.
    E. Bauer, Growth of oriented films on amorphous surfaces in: Single-Crystal Films (M. H. Francombe and H. Sato, eds.), pp. 43–67, Macmillan, New York (1964).Google Scholar
  312. 293.
    H. J. Leamy, G. H. Gilmer, and A. G. Dirks, The microstructure of vapor deposited thin films, Curr. Top. Mater. Sci. 6, 309–344 (1980).Google Scholar
  313. 294.
    R. Messier and J. E. Yehoda, Geometry of thin-film morphology, J. Appl. Phys. 58, 3739–3746 (1985).Google Scholar
  314. 295.
    S. Lichter and J. Chen, Model for columnar microstructure of thin solid films, Phys. Rev. Lett. 56, 1396–1399 (1986).Google Scholar
  315. 296.
    E. I. Givargizov, Highly-Anisotropic Crystals, Reidel, Dordrecht (1987).Google Scholar
  316. 297.
    T. I. Kamins, M. M. Mandurah, and K. C. Saraswat, Structure and stability of low pressure chemically vapor-deposited silicon films, J. Electrochem. Soc. 125, 927–932 (1978).Google Scholar
  317. 298.
    T. I. Kamins, Structure and properties of LPCVD silicon films, J. Electrochem. Soc. 127, 686–690 (1980).Google Scholar

Copyright information

© Springer Science+Business Media New York 1991

Authors and Affiliations

  • E. I. Givargizov
    • 1
  1. 1.Institute of CrystallographyAcademy of Sciences of the USSRMoscowUSSR

Personalised recommendations