Skip to main content

Hydrogen and Hydrogen Impurities in Rare Gases

  • Conference paper
Momentum Distributions

Abstract

The hydrogen molecule in condensed systems has been extensively studied. With the exception of solid hydrogen,1 the kinetic energy associated with translational motion of the center of mass of the molecule has not been directly measured. Deep inelastic neutron scattering (DINS) provides a direct probe of the single particle behavior of the molecule and can be used to determine the center of mass translational kinetic energy, < KE >.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. W. Langel, D. L. Price, R. O. Simmons, and P. E. Sokol, accepted for publication in Phys. Rev. B.

    Google Scholar 

  2. I. F. Silvera, Rev. Mod. Phys. 52, 393, (1980).

    Article  ADS  Google Scholar 

  3. M. Bloom and J. A. Morrison, in Surface and Defect Properties of Solids, Vol. 2. (Billing and Sons, Ltd., London 1973).

    Google Scholar 

  4. K. W. Herwig, M. C. Schmidt, J. L. Gavilano, and R. O. Simmons, LT-18 Proceedings, Japanese J. Appl. Phys. 26, 445, (1987).

    Article  Google Scholar 

  5. J. A. Young and J. U. Koppel, Phys. Rev. 135A, 603, (1964).

    Article  ADS  Google Scholar 

  6. G. L. Squires and A. T. Stewart, Proc. Roy. Soc. A 230, 19, (1955).

    Article  ADS  Google Scholar 

  7. T. L. Houk, D. Shambroom, and R. Wilson, Phys. Rev. Lett. 26, 1581, (1971).

    Article  ADS  Google Scholar 

  8. S. H. Chen, T. A. Postol, and K. Sköld, Phys. Rev. A 16, 2112, (1977).

    Article  ADS  Google Scholar 

  9. P. C. Souers, Cryogenic Hydrogen Data Pertinent to Magnetic Fusion Energy, Lawrence Livermore Laboratory report UCRL-52628, (1970).

    Google Scholar 

  10. C.-K. Loong, S. Ikeda, and J. M. Carpenter, Nuc. Instr. and Meth. A260, 381, (1987).

    Article  ADS  Google Scholar 

  11. K. W. Herwig, Ph.D. thesis, The University of Illinois at Champaign-Urbana (1988).

    Google Scholar 

  12. J. Van Kranendonk, Solid Hydrogen, (Plenum Press, New York, 1983).

    Book  Google Scholar 

  13. M. Born and K. Huang, Dynamical Theory of Crystal Lattices, (Oxford University Press, Oxford, 1985).

    Google Scholar 

  14. M. Nielsen, Phys. Rev. B 7, 1626, (1973).

    Article  ADS  Google Scholar 

  15. V. V. Goldman, J. Low Temp. Phys. 38, 149, (1980).

    Article  ADS  Google Scholar 

  16. V. V. Goldman, Phys. Rev. B 20, 4478, (1979).

    Article  ADS  Google Scholar 

  17. V. Deitz, J. Chem. Phys. 2, 296, (1934).

    Article  ADS  Google Scholar 

  18. J. K. Krause and C. A. Swenson, Sol. State Comm. 31, 833, (1979).

    Article  ADS  Google Scholar 

  19. J. deBoer and B. S. Blaisse, Physica 14, 149, (1948).

    Article  ADS  Google Scholar 

  20. T. A. Bruce, Phys. Rev. B 5, 4170, (1972).

    Article  ADS  Google Scholar 

  21. M. S. Conradi, K. Luszczynski, and R. E. Norberg, Phys. Rev. B 19, 20, (1979).

    Article  ADS  Google Scholar 

  22. M. S. Conradi, K. Luszczynski, and R. E. Norberg, Phys. Rev. B 20, 2594, (1979).

    Article  ADS  Google Scholar 

  23. V. F. Sears, Proc. Phys. Soc.86, 953 (1965).

    Article  ADS  Google Scholar 

  24. V. F. Sears, Proc. Phys. Soc.86, 965 (1965).

    Article  ADS  Google Scholar 

  25. O. J. Eder, S. H. Chen, and P. A. Egelstaff, Proc. Phys. Soc. 89, 833, (1966).

    Article  ADS  Google Scholar 

  26. R. J. Kriegler and H. L. Welsh, Can. J. Phys. 46, 1181, (1968).

    Article  ADS  Google Scholar 

  27. J. De Remigis and H. L. Welsh, Can. J. Phys. 48, 1622, (1970).

    Article  ADS  Google Scholar 

  28. J. A. Warren, G. R. Smith, and W. A. Guillory, J. Chem. Phys. 72, 4901, (1980).

    Article  ADS  Google Scholar 

  29. V. Chandrasekharan, M. Chergui, B. Silvi, and R. D. Etters, Physica 131B, 267, (1985).

    Google Scholar 

  30. B. Silvi, V. Chandrasekharan, M. Chergui, and R. D. Etters, Phys. Rev. B 33, 2749, (1986).

    Article  ADS  Google Scholar 

  31. K. W. Herwig, J. L. Gavilano, M. C. Schmidt, and R. O. Simmons, to be published.

    Google Scholar 

  32. K. W. Herwig, R. C. Blasdell, M. C. Schmidt, and R. O. Simmons, to be published.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1989 Springer Science+Business Media New York

About this paper

Cite this paper

Herwig, K.W., Simmons, R.O. (1989). Hydrogen and Hydrogen Impurities in Rare Gases. In: Silver, R.N., Sokol, P.E. (eds) Momentum Distributions. Springer, Boston, MA. https://doi.org/10.1007/978-1-4899-2554-1_13

Download citation

  • DOI: https://doi.org/10.1007/978-1-4899-2554-1_13

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4899-2556-5

  • Online ISBN: 978-1-4899-2554-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics