Inhibition of Bovine Heart Mitochondrial NADH — Ubiquinone Reductase by Tinopal AN, A Cationic Benzoxazole

  • W. Marshall Anderson
  • Deborah L. Delinck-Gordon


The effect of Tinopal AN (1,1-bis(3, N-5 dimethylbenzoxazol-2-yl)-methine p-toluene sulfonate) on the respiration of bovine heart mitochondria was investigated. This compound was found to inhibit electron transport in a concentration dependent manner at site 1, with half maximal inhibition at about 90 uM reagent. Tests with either submitochondrial particles (SMP) or isolated complex I indicate that Tinopal AN specifically inhibits electron flow between NADH and coenzyme Q, and not between NADH and artificial electron acceptors, except menadione. Concentrations of Tinopal AN too low to cause significant inhibition of SMP NADH oxidase activity changed the sigmoid-shaped rotenone inhibition curve to a hyperbolic function, indicating that at low concentrations Tinopal AN may bind at the high affinity lower inhibitory rotenone site within complex I. Kinetics experiments indicate mixed inhibition with respect to coenzyme Q, with a unusual concentration dependent pattern, which may suggest multiple binding sites of differing affinities. This appears to be supported by cross-linking studies which indicate concentration dependent conformational changes do occur within complex I in the presence of Tinopal AN.


NADH Dehydrogenase Aerobic Respiration Bovine Heart Paracoccus Denitrificans Submitochondrial Particle 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Ramsay, R.R., Salach, J.I., and Singer, T.P. (1986) Biochem. Biophys. Res. Commun. 134, 743–748.PubMedCrossRefGoogle Scholar
  2. 2.
    Ramsay, R.R., Salach, J.I., Dadgar, J., and Singer, T.P. (1986) Biochem. Biophys. Res. Commun. 135, 269–275.PubMedCrossRefGoogle Scholar
  3. 3.
    Ramsay, R.R., and Singer, T.P. (1986) J. Biol. Chem. 261, 7585–7587.PubMedGoogle Scholar
  4. 4.
    Mizuno, Y., Sone, N., and Saitoh, T. (1986) Proc. Japan Acad. 62, 261–263.CrossRefGoogle Scholar
  5. 5.
    Mizuno, Y., Saitoh, T., and Sone, N. (1987) Bioohem.Biophys. Res. Commun. 143, 294–299.CrossRefGoogle Scholar
  6. 6.
    Gutman, M., Coles, C.J., Singer, T.P., and Casida, J.E. (1971) Biochemistry 10, 2036–2045.PubMedCrossRefGoogle Scholar
  7. 7.
    Gutman, M., and Kliatchko, S. (1976) FEBS Lett. 67, 348–353.PubMedCrossRefGoogle Scholar
  8. 8.
    Horgan, D.J., Singer, T.P. and Casida, J.E. (1968) J. Biol. Chem. 243, 834–843.PubMedGoogle Scholar
  9. 9.
    Horgan, D.J. Ohno, H., Singer T.P., and Casida, J.E. (1968) J. Biol. Chem. 243, 5967–5976.PubMedGoogle Scholar
  10. 10.
    Gutman, M., Singer, T.P., and Casida, J.E. (1969) Biochem. Biophys. Res. Commun. 37, 615–622.PubMedCrossRefGoogle Scholar
  11. 11.
    Gutman, M., Singer, T.P., and Casida, J.E. (1970) J. Biol. Chem. 245, 1992–1997.PubMedGoogle Scholar
  12. 12.
    Earley, F.G.P., and Ragan, C.I. (1984) Biochem. J. 224, 525–534.PubMedGoogle Scholar
  13. 13.
    Gondal, J.A., and Anderson, W.M. (1985) J. Biol. Chem. 260, 12690–12694.PubMedGoogle Scholar
  14. 14.
    Phillips, M. K., and Kell, D.B. (1981) FEMS Microbiol. Lett. 11, 111–113.CrossRefGoogle Scholar
  15. 15.
    Phillips, M.K., and Kell, D.B. (1982) FEBS Lett. 140, 248–250.PubMedCrossRefGoogle Scholar
  16. 16.
    Hatefi, Y., Haavik, A.G., and Griffiths, D.E. (1962) J. Biol. Chem. 237, 1676–1680.PubMedGoogle Scholar
  17. 17.
    Low, H., and Vallin, I. (1963) Biochim. Biophys. Acta 69, 361–374.CrossRefGoogle Scholar
  18. 18.
    Hatefi, Y., Haavik, A.G., and Jurtshuk, P. (1961) Biochim. Biophys. Acta 52, 106–118.PubMedCrossRefGoogle Scholar
  19. 19.
    Jacobs, E.E., Jacobs, M., Sanadi, D.R., and Bradley, L.D. (1956) J. Biol. Chem. 223, 147–156.PubMedGoogle Scholar
  20. 20.
    Galante, Y. M., and Hatefi, Y. (1979) Arch. Biochem. Biophys. 192, 559–568.PubMedCrossRefGoogle Scholar
  21. 21.
    Ruzicka, F.J., and Crane, F.L. (1970) Biochim. Biophys. Acta 223, 71–85.PubMedCrossRefGoogle Scholar
  22. 22.
    Ruzicka, F.J., and Crane, F.L. (1971) Biochim. Biophys. Acta 226, 221–233.PubMedCrossRefGoogle Scholar
  23. 23.
    Ferreira, J., Wilkinson, C., and Gil, L. (1986) Biochem. Internat. 12, 447–459.Google Scholar
  24. 24.
    John, P., and Whatley, F.R. (1977) Biochim. Biophys. Acta 463, 129–153.PubMedCrossRefGoogle Scholar
  25. 25.
    Kell, D.B., John, P., and Ferguson, S.J. (1978) Biochem. J. 174, 257–266.PubMedGoogle Scholar
  26. 26.
    Meijer, E.M., Schuitenmaker, M.G., Boogerd, F.C., Wever, R., and Stouthamer, A.H. (1978) Arch. Microbiol. 119, 119–127.PubMedCrossRefGoogle Scholar
  27. 27.
    Yagi, T. (1986) Arch. Biochem. Biophys. 250, 302–311.PubMedCrossRefGoogle Scholar
  28. 28.
    Palmer, G., Horgan, D.J., Tisdale, H., Singer, T.P., and Beinert, H. (1968) J. Biol. Chem. 243, 844–847.PubMedGoogle Scholar
  29. 29.
    Gutman, M., Singer, T.P., and Beinert, H. (1971) Biochem. Biophys. Res. Commun. 44, 1572–1578.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1988

Authors and Affiliations

  • W. Marshall Anderson
    • 1
  • Deborah L. Delinck-Gordon
    • 1
  1. 1.Northwest Center for Medical EducationIndiana University School of MedicineGaryUSA

Personalised recommendations