Glucagon Stimulation of Mitochondrial Metabolism

  • Robert C. HaynesJr.


It has been known for a number of years that if liver mitochondria are isolated either from rats treated a few minutes with glucagon or from hepatocytes treated briefly in vitro with the hormone, the mitochondria exhibit remarkable changes in a number of functions. Among these are increases in the rates of state 3 and uncoupled respiration, the carboxylation of pyruvate, the formation of citrulline, and the activity of the uncoupler-dependent ATPase. In addition, the mitochondria contain an increased quantity of adenine nucleotides. Except for this last phenomenon, the increase in mitochondrial nucleotides, the physiological significance of these events is not known, nor is the mechanism by which glucagon and other hormones produce these changes.


ATPase Activity Hormone Treatment Adenine Nucleotide Adenine Nucleotide Translocase ATPase Assay 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Allan, E. H., Chisholm, A. B., and Titheradge, M.A., 1983, Biochem. J., 212:417–426.PubMedGoogle Scholar
  2. Asimakis, G. K. and Aprille, J. R., 1980, Arch. Biochem. Biophys., 203: 307–316.PubMedCrossRefGoogle Scholar
  3. Austin, J. and Aprille, J. R., 1984, J. Biol. Chem., 259:154–160.PubMedGoogle Scholar
  4. Bartfai, T., 1979, Adv. Cyclic Nucleotide Res., 10:219–242.PubMedGoogle Scholar
  5. Bertina, R. M. and Slater, E. C., 1975, Biochim. Biophys. Acta, 376:492–504.PubMedCrossRefGoogle Scholar
  6. Carafoli, E., Rossi, D. S., and Lehninger, A. L., 1965, J. Biol. Chem., 240:2254–2261.PubMedGoogle Scholar
  7. Cereijo-Santalo, R., 1972, Arch. Biochem. Biophys., 152:78–82.PubMedCrossRefGoogle Scholar
  8. Halestrap, A. P., 1987, Biochim,Biophys. Acta, 927:280–290.CrossRefGoogle Scholar
  9. Haynes, R. C., Jr. and Picking, R. A., 1984, J. Biol. Chem., 259:13228–13234.PubMedGoogle Scholar
  10. Haynes, R. C., Jr., Picking, R. A., and Zaks, W. J., 1986, J. Biol. Chem., 261:16121–16125.PubMedGoogle Scholar
  11. Jensen, C. B., Sistare, F. D., Hamman, H. C., and Haynes, R. C., Jr., 1983, Biochem. J., 210:819–827.PubMedGoogle Scholar
  12. Kraayenhof, R. and VanDam, K., 1969, Biochim. Biophys. Acta, 233:580–590.Google Scholar
  13. Nicholls, D. G. and Lindberg, O., 1972, FEBS Lett., 25:61–64.PubMedCrossRefGoogle Scholar
  14. Quinlan, P. T., Thomas, A. P., Armston, A. E., and Halstrap, A. P., 1983, Biochem. J., 214:395–404.PubMedGoogle Scholar
  15. Siess, E. A., Fahimi, F. M., and Wieland, O. H., 1981, Hoppe-Seyler’s Z. Physiol. Chem., 362:1643–1651.PubMedCrossRefGoogle Scholar
  16. Sistare, F. D., Picking, R. A., and Haynes, R. C., Jr., 1985, J. Biol. Chem., 260:12744–12747.PubMedGoogle Scholar
  17. Titheradge, M. A., and Haynes, R. C., Jr., 1980, J. Biol. Chem., 255:1471–1477.PubMedGoogle Scholar
  18. Vargas, A. M., Halestrap, A. P., and Denton, R. M., 1982, Biochem. J., 208:221–229.PubMedGoogle Scholar
  19. Verdouw, H. and Bertina, R. M., 1973, Biochim. Biophys. Acta, 325, 385–396.PubMedCrossRefGoogle Scholar
  20. Yamazaki, R. K., Sax, R. D., and Hauser, M. A., 1977, FEBS Lett., 75: 295–299.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1988

Authors and Affiliations

  • Robert C. HaynesJr.
    • 1
  1. 1.University of VirginiaCharlottesvilleUSA

Personalised recommendations