Lithium Ion is a Competitive Inhibitor of the Na+ Selective Na+/H+ Antiporter from Mitochondria

  • Sati Nath
  • Keith D. Garlid


The existence of an inner membrane Na+/H+ antiporter in mitochondria was predicted by Peter Mitchell (1961) and later demonstrated experimentally by Mitchell and Moyle (1967; 1969). These and subsequent studies by Douglas and Cockrell (1974) and Brierley (1976) led to the conclusions that mitochondria possess one Na+/H+ antiporter and that this porter also catalyzes K+/H+ exchange at a much lower rate. Indeed K+/H+ exchange was so low that some workers (Rosen and Futai, 1980) concluded that mitochondria do not possess such activity.


Millipore Filtration Double Reciprocal Plot Transport Site Acetate Salt Light Scattering Technique 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Beavis, A. D., Brannan, R. D., and Garlid, K. D. (1985) J. Biol. Chem. 260, 13424–13433.PubMedGoogle Scholar
  2. Brierley, G. P. (1976) Mol. Cell. Biochem. 10, 41–62.PubMedCrossRefGoogle Scholar
  3. Brierley, G. P., Jurkowitz, M., and Jung, D. W. (1978) Arch. Biochem. Biophys. 190, 181–192.PubMedCrossRefGoogle Scholar
  4. Douglas, M. G., and Cockrell, R. S. (1974) J. Biol. Chem. 249, 5464–5471.PubMedGoogle Scholar
  5. Garlid, K. D. (1978) Biochem. Biophys. Res. Comm. 83. 1450–1455.PubMedCrossRefGoogle Scholar
  6. Garlid, K. D. (1987) in Regulation of Cellular Calcium (Pfeiffer, D., McMillan-Wood, J., Little, S., and Fiskum, G., ed.), in the press, Plenum Publ. Corp., New York.Google Scholar
  7. Garlid, K. D. (This volume).Google Scholar
  8. Garlid, K. D., and Beavis, A. D. (1985) J. Biol. Chem. 260, 13434–13441.PubMedGoogle Scholar
  9. Grinstein, S., and Rothstein, A. (1986) J. Membr. Biol. 90, 1–12.PubMedCrossRefGoogle Scholar
  10. Kakar, S. S., Huang, W.-H., and Askari, A. (1987) J. Biol. Chem. 262, 42–45.PubMedGoogle Scholar
  11. Kinsella, J. L., and Aronson, P. S. (1981) Am. J. Physiol. 241, C220–C226.PubMedGoogle Scholar
  12. Krulwich, T. A. (1983) Biochim. Biophys. Acta 726, 245–264.PubMedCrossRefGoogle Scholar
  13. Mitchell, P. (1961) Nature 191, 144–148.PubMedCrossRefGoogle Scholar
  14. Mitchell, P. (1966) Biol. Rev. 41. 445–502.PubMedCrossRefGoogle Scholar
  15. Mitchell, P., and Moyle, J. (1967) Biochem. J. 105, 1147–1162.PubMedGoogle Scholar
  16. Mitchell, P., and Moyle, J. (1969) Eur. J. Biochem. 9, 149–155.PubMedCrossRefGoogle Scholar
  17. Nakashima, R. A., and Garlid, K. D. (1982) J. Biol. Chem. 257, 9252–9254.PubMedGoogle Scholar
  18. Pierce, G. N., and Philipson, K. D. (1985) Biochim. Biophys. Acta 818, 109–116.PubMedCrossRefGoogle Scholar
  19. Rosen, B. P., and Futai, M. (1980) FEBS Lett. 117, 39–43.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1988

Authors and Affiliations

  • Sati Nath
    • 1
  • Keith D. Garlid
    • 1
  1. 1.Department of PharmacologyMedical College of OhioToledoUSA

Personalised recommendations