Skip to main content

Mechanisms Stabilizing the Protonmotive Force in Respiring Mitochondria

  • Chapter
  • 114 Accesses

Abstract

In a respiring cell the magnitude of mitochondrial electrochemical proton gradient (ΔμH +) may be regarded as homeostated. Three distinct elements produce the basis for this homeostasis:

  1. 1)

    nonlinearity in the relationships between ΔΔH + and the activities of the respiratory chain and ATP synthase,

  2. 2)

    nonohmic character of the leaks of cations through the inner mitochondrial membrane,

  3. 3)

    high capacity of ΔΔH + for energy storage.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. J. Duszyñski, K. Bogucka, and L. Wojtczak, Homeostasis of the protonmotive force in phosphorylating mitochondria, Biochim. Biophys. Acta, 767:540 (1984).

    Article  PubMed  Google Scholar 

  2. D. G. Nicholls, The influence of respiration and ATP hydrolysis on the proton-electrochemical gradient across the inner membrane of rat liver mitochondria as determined by ion distribution, Eur. J. Biochem., 50:305 (1974).

    Article  PubMed  CAS  Google Scholar 

  3. M. C. Sorgato, and S. J. Ferguson, Variable proton conductance of submitochondrial particles, Biochemistry, 18:5737 (1979).

    Article  PubMed  CAS  Google Scholar 

  4. D. Pietrobon, G. F. Azzone, and D. Walz, Effect of funiculosin and antimycin A on the redox-driven H-pumps in mitochondria: on the nature of “leaks”, Eur. J. Biochem., 117:389 (1981).

    Article  PubMed  CAS  Google Scholar 

  5. G. Krishnamoorthy, and P. Hinkle, Non-ohmic proton conductance of mitochondria and liposomes, Biochemistry, 23:1640 (1984).

    Article  PubMed  CAS  Google Scholar 

  6. J. Duszyñski, and L. Wojtczak, The apparent non-linearity of the relationship between the rate of respiration and the protonmotive force of mitochondria can be explained by heterogeneity of mitochondrial preparations, FEBS Lett., 182:243 (1985).

    Article  PubMed  Google Scholar 

  7. G. C. Brown, and M. D. Brand, Changes in permeability to protons and other cations at high proton motive force in rat liver mitochondria, Biochem. J., 234:75 (1986).

    PubMed  CAS  Google Scholar 

  8. D. Pietrobon, M. Zoratti, G. F. Azzone, J. W. Stucki, and D. Walz, Non-equilibrium thermodynamic assessment of redox-driven H+-pumps in mitochondria, Eur. J. Biochem., 127:483 (1982).

    Article  PubMed  CAS  Google Scholar 

  9. M. Zoratti, M. Favron, D. Pietrobon, and G. F. Azzone, Intrinsic uncoupling of mitochondrial proton pumps. 1. Non-ohmic conductance cannot account for the nonlinear dependence of static head respiration on the protonmotive force, Biochemistry, 25:760 (1986).

    Article  PubMed  CAS  Google Scholar 

  10. D. Pietrobon, M. Zoratti, G. F. Azzone, and S. R. Caplan, Intrinsic uncoupling of mitochondrial proton pumps. 2. Modeling studies, Biochemistry, 25:767 (1986).

    Article  PubMed  CAS  Google Scholar 

  11. J. B. Jackson, Evidence that the ionic conductivity of the cytoplasmic membrane of Rhodopseudomonas capsulata is dependent upon membrane potential, FEBS Lett., 139:139 (1982).

    Article  CAS  Google Scholar 

  12. D. G. Nicholls, Bioenergetics, Academic Press, New York (1982).

    Google Scholar 

  13. H. Pauly, L. Packer, and H. P. Schwan, Electrical properties of mitochondrial membranes, J. Biochem. Biophys. Cytol., 7:589 (1960).

    Article  CAS  Google Scholar 

  14. L. Wojtczak, A. Żółkiewska, and J. Duszyñski, Energy-storage capacity of the mitochondrial proton-motive force, Biochim. Biophys. Acta, 851: 313 (1986).

    Article  PubMed  CAS  Google Scholar 

  15. J. J. Lemasters, and C. R. Hackeribrock, The energized state of rat liver mitochondria. ATP equivalence, uncoupler sensitivity and decay kinetics, J. Biol. Chem., 255:5674 (1980).

    PubMed  CAS  Google Scholar 

  16. R. H. Eisenhardt, and O. Rosental, Studies on energy transfer in mitochondrial oxidative phosphorylation. III. On the interactions of adenosine diphosphate with high-energy intermediates, Biochemistry, 7:1327 (1968).

    Article  PubMed  CAS  Google Scholar 

  17. A. Azzi, and B. Chance, The “energized state” of mitochondria: lifetime and ATP equivalence, Biochim. Biophys. Acta, 189:141 (1969).

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1988 Springer Science+Business Media New York

About this chapter

Cite this chapter

Duszyñski, J., Żółkiewska, A., Bogucka, K., Wojtczak, L. (1988). Mechanisms Stabilizing the Protonmotive Force in Respiring Mitochondria. In: Lemasters, J.J., Hackenbrock, C.R., Thurman, R.G., Westerhoff, H.V. (eds) Integration of Mitochondrial Function. Springer, Boston, MA. https://doi.org/10.1007/978-1-4899-2551-0_20

Download citation

  • DOI: https://doi.org/10.1007/978-1-4899-2551-0_20

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4899-2553-4

  • Online ISBN: 978-1-4899-2551-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics