Nonequilibrium Thermodynamics and Cellular Bioenergetics

  • Jörg W. Stucki
  • Erwin Sigel


The aim of every evolved and adapted biological system consists in converting the energy contained in the foodstuff into useful work in the possibly most efficient manner. This work may consist in muscular contraction, directed ion transport across a membrane, biosynthesis of the building blocks of the organism etc. The common denominator to all these energy consuming reactions is to make use of the quality of energy to do work or, in other words, to exploit the possibility of using directed energy rather than randomized thermal motion. Directed energy has been called exergy in contrast to randomized thermal motion which is called entropy1,2.


Oxidative Phosphorylation Thermal Motion Optimal Efficiency Directed Energy Energy Converter 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. (1).
    P.W. Atkins, The Second Law, Scientific American Library, W.H. Freeman & Company, New New York, 1984.Google Scholar
  2. (2).
    K.S. Spiegler, Principles of Energetics, Springer Verlag, Berlin 1983.CrossRefGoogle Scholar
  3. (3).
    O. Kedem & R.S. Caplan, Trans. Faraday. Soc., 21 (1965), 1897.CrossRefGoogle Scholar
  4. (4).
    J.W. Slucki, Eur. J. Biochem., 109 (1980) 269–283.CrossRefGoogle Scholar
  5. (5).
    I. Prigogine, Introduction to Thermodynamics of Irreversible Processes, J. Wiley, New York, 1967.Google Scholar
  6. (6).
    J.J. Lemasters, & W.H. Billica, J. Biol. Chem. 256 (1981) 12949–12957.PubMedGoogle Scholar
  7. (7).
    D. Pietrobon & S.R. Caplan, Biochemistry 24 (1985) 5764–5776.PubMedCrossRefGoogle Scholar
  8. (8).
    H.V. Westerhoff, K.J. Hellingwerf & K. VanDam, Proc. Natl. Acad. Sci. USA 80 (1983) 305–309.PubMedCrossRefGoogle Scholar
  9. (9).
    S. Soboll and J.W. Stucki, Biochem. Biophys. Acta 807 (1985) 245–254.PubMedCrossRefGoogle Scholar
  10. (10).
    J.W. Stucki, L.H. Lehmann & P. Mani, Biophys. Chem. 19 (1984) 131–145.PubMedCrossRefGoogle Scholar
  11. (11).
    J.W. Stucki, Progr. Biophys. Mol. Biol. 33 (1978) 99–187.CrossRefGoogle Scholar
  12. (12).
    In preparation for J. Biol. Chem.Google Scholar
  13. (13).
    J. Lahav, A. Essig & S.R. Caplan, Biochim. Biophys. Acta 448 (1976), 389–392.PubMedCrossRefGoogle Scholar
  14. (14).
    L. Wojtczak, J. Bioenerg. Biomembr. 8 (1976) 293–311.PubMedGoogle Scholar
  15. (15).
    F. Wold, TIBS 11 (1986) 58–59.Google Scholar
  16. (16).
    J.W. Stucki, Eur. J. Biochem. 109 (1980) 257–267.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1988

Authors and Affiliations

  • Jörg W. Stucki
    • 1
  • Erwin Sigel
    • 1
  1. 1.Pharmakologisches InstitutBernSwitzerland

Personalised recommendations