Skip to main content

The Mechanism of Uncoupling of Oxidative Phosphorylation

  • Chapter
Integration of Mitochondrial Function

Abstract

Following the pioneer studies of Mitchell and Moyle (1) it is now generally accepted that there exists a correlation between protonophoric effects and uncoupling of oxidative phosphorylation. However conclusive evidence has never been reported that the uncoupling is exclusively due to the increase of membrane conductance for protons. In fact the quantitative comparison carried out by Mitchell and Moyle (1) was based on estimates of Δμ̃H which were too high and on values of H+/e stoichiometries which were too low than later established. By introducing the correct values of Δμ̃H and H+/e stoichiometries from the values of membrane conductance and rate of respiration, observed by Mitchell and Moyle (1), it is possible to calculate that the proton efflux via the pump is several times higher than the proton influx via the membrane. Recently our laboratory has provided experimental evidence that the rate of electron transfer multiplied by the H+e stoichiometry is higher than the dissipative proton influx at the same (2). The discrepancy has been attributed to intrinsic uncoupling (slip) of the redox proton pumps whereby electrons can be transferred without proton pumping (3–6).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Mitchell P. and Moyle J. (1967) Biochem. J. 104, 588–600.

    PubMed  CAS  Google Scholar 

  2. Zoratti M., Favaron M., Pietrobon D. and Azzone G.F. (1986) Biochemistry 25, 760–767.

    Article  PubMed  CAS  Google Scholar 

  3. Pietrobon D., Azzone G.F. and Walz D. (1981) Eur. J. Biochem. 117, 384–394.

    Google Scholar 

  4. Walz D. (1983) in Biological Structure and Coupled Flows (Optlaka A, and Balaban M. Eds, pp 45–60, Accademic Press, New York.

    Google Scholar 

  5. Pietrobon D. and Caplan S.R. (1985) Biochemistry 24, 5764–5776.

    Article  PubMed  CAS  Google Scholar 

  6. Pietrobon D., Zoratti M., Azzone G.F. and Caplan S.R. (1986) Biochemistry 25, 767–775.

    Article  PubMed  CAS  Google Scholar 

  7. Rottenberg H. and Hashimoto K. (1986) Biochemistry 25, 1747–1753.

    Article  PubMed  CAS  Google Scholar 

  8. Pietrobon D., and Caplan S.R. (1986) Biochemistry 25, 7682–7690.

    Article  PubMed  CAS  Google Scholar 

  9. Luvisetto S., Pietrobon D. and Azzone G.F. (1987) Biochemistry 26, 7332–7338.

    Article  PubMed  CAS  Google Scholar 

  10. Pietrobon D., Luvisetto S. and Azzone G.F. (1987) Biochemistry 26, 7339–7347.

    Article  PubMed  CAS  Google Scholar 

  11. Massari S., Frigeri L. and Azzone G.F. (1972) J. Membr. Biol. 9, 57–70.

    Article  CAS  Google Scholar 

  12. Pietrobon D., Zoratti M. and Azzone, G.F. (1984) Biochim. Biophys. Acta 723, 317–321.

    Google Scholar 

  13. Azzone G.F., Pietrobon D. and Zoratti M. (1984) Cur. Top. Bioenerg. 13, 1–77.

    CAS  Google Scholar 

  14. Zoratti M. and Petronilli V. (1985) FEBS Letter 193, 276–282.

    Article  CAS  Google Scholar 

  15. Nicholls D. (1974) Eur. J. Biochem. 50, 305–315.

    Article  PubMed  CAS  Google Scholar 

  16. Pietrobon D. (1986) Bioelectrochem. Bioenerg. 15, 193–209.

    Article  CAS  Google Scholar 

  17. Westerhoff H.V., Melandri B.A., Venturoli G., Azzone G.F. and Kell D.B. (1984) Biochim. Biophys. Acta 768, 257–292.

    Article  PubMed  CAS  Google Scholar 

  18. Rottenberg H. (1978) FEBS Letters 94, 295–297.

    Article  PubMed  CAS  Google Scholar 

  19. Slater E.C., Berden J.A. and Herweijer M.A. (1985) Biochim. Byophys. Acta 811, 217–231.

    Article  CAS  Google Scholar 

  20. Zoratti M., Pietrobon D. and Azzone G.F. (1982) Europ. J. Biochem. 126, 443–451.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1988 Springer Science+Business Media New York

About this chapter

Cite this chapter

Azzone, G.F., Pietrobon, D., Luvisetto, S. (1988). The Mechanism of Uncoupling of Oxidative Phosphorylation. In: Lemasters, J.J., Hackenbrock, C.R., Thurman, R.G., Westerhoff, H.V. (eds) Integration of Mitochondrial Function. Springer, Boston, MA. https://doi.org/10.1007/978-1-4899-2551-0_12

Download citation

  • DOI: https://doi.org/10.1007/978-1-4899-2551-0_12

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4899-2553-4

  • Online ISBN: 978-1-4899-2551-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics