Skip to main content

Leaks Induced by Electrical Breakdown in the Erythrocyte Membrane

  • Chapter
Electroporation and Electrofusion in Cell Biology

Abstract

Among animal cells, the erythrocyte has played a very important role in the study of the electrical breakdown* of biological membranes. Much of the original data on this process stem from erythrocytes. This is due to the ready availability and the easy handling of this model system as well as the easy means to detect the formation of membrane leaks by virtue of their final consequence, the release of hemoglobin due to colloid-osmotic lysis. Moreover, the erythrocyte is the simplest system that can be envisaged for studying electrical breakdown of animal cell membranes, since only one membrane surrounding a macroscopically homogeneous cytoplasmic space is involved. Finally, there is probably no other eukaryotic cell for which so many details concerning the membrane constituents, their three-dimensional organization, their biological function, and their overall dynamics and transport properties are already known.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Benz, R., and Conti, F., 1981, Reversible electrical breakdown of squid giant axon membrane, Biochim. Biophys. Acta 645:115–123.

    Article  PubMed  CAS  Google Scholar 

  • Benz, R., and Zimmermann, U., 1981, The resealing process of lipid bilayers after reversible electrical breakdown, Biochim. Biophys. Acta 640:169–178.

    Article  PubMed  CAS  Google Scholar 

  • Bergmann, W. L., Dressier, V., Haest, C. W. M., and Deuticke, B., 1984a, Crosslinking of SH-groups in the erythrocyte membrane enhances transbilayer reorientation of phospholipids, Biochim. Biophys. Acta 769:390–398.

    Article  PubMed  CAS  Google Scholar 

  • Bergmann, W. L., Dressier, V., Haest, C. W. M., and Deuticke, B., 1984b, Reorientation rates and asymmetry of distribution of lysophospholipids between the inner and outer leaflet of the erythrocyte membrane, Biochim. Biophys. Acta 772:328–336.

    Article  PubMed  CAS  Google Scholar 

  • Blumenthal, R., Kempf, C., Van Renswoude, J., Weinstein, J. N., and Klausner, R. D., 1983, Voltagedependent orientation of membrane proteins, J. Cell. Biochem. 22:55–67.

    Article  PubMed  CAS  Google Scholar 

  • Bondi, A., 1964, Van der Waals volumes and radii, J. Phys. Chem. 68:441–451.

    Article  CAS  Google Scholar 

  • Chasis, J. A., and Shohet, S. B., 1987, Red cell biochemical anatomy and membrane properties, Annu. Rev. Physiol. 49:237–248.

    Article  PubMed  CAS  Google Scholar 

  • Chernomordik, L. V., Sukharev, S. I., Abidor, I. G., and Chizmadzhev, Y., 1983, Breakdown of lipid bilayer membranes in an electric field, Biochim. Biophys. Acta 736:203–213.

    Article  CAS  Google Scholar 

  • Chernomordik, L. V., Sukharev, S. I., Popov, S. V., Pastushenko, V. F., Sokirko, A. V., Abidor, I. G., and Chizmadzhev, Y. A., 1987, The electrical breakdown of cell and lipid membranes: The similarity of phenomenologies, Biochim. Biophys. Acta 902:360–373.

    Article  PubMed  CAS  Google Scholar 

  • Claßen, J., Haest, C. W. M., Tournois, H., and Deuticke, B., 1987, Gramicidin-induced enhancement of transbilayer reorientation of lipids in the erythrocyte membrane, Biochemistry 26:6604–6612.

    Article  PubMed  Google Scholar 

  • Coster, H. G. L., and Zimmermann, U, 1975, The mechanism of electrical breakdown in the membranes of Valonia utricularis, J. Membr. Biol. 22:73–90.

    Article  PubMed  CAS  Google Scholar 

  • de Kruijff, B., Cullis, P. R., Verkleij, A. J., Hope, M. J., Van Echteld, C. J. A., and Taraschi, T. F., 1985, Lipid polymorphism and membrane function, in: The Enzymes of Biological Membrane (2nd ed.), Volume 1 (A. N. Martonosi, ed.), Plenum Press, New York, pp. 131–204.

    Chapter  Google Scholar 

  • Deuticke, B., 1977, Properties and structural basis of simple diffusion pathways in the erythrocyte membrane, Rev. Physiol. Biochem. Pharmacol. 78:1–97.

    Article  PubMed  CAS  Google Scholar 

  • Deuticke, B., Poser, B., Lütkemeier, P., and Haest, C. W. M., 1983, Formation of aqueous pores in the human erythrocyte membrane after oxidative cross-linking of spectrin by diamide, Biochim. Biophys. Acta 731:196–210.

    Article  PubMed  CAS  Google Scholar 

  • Deuticke, B., Lütkemeier, P., and Sistemich, M., 1984, Ion selectivity of aqueous leaks induced in the erythrocyte membrane by crosslinking of membrane proteins, Biochim. Biophys. Acta 775:150–160.

    Article  PubMed  CAS  Google Scholar 

  • Deuticke, B., Heller, K. B., and Haest, C. W. M., 1986, Leak formation in human erythrocyte by the radicalforming oxidant t-butylhydroperoxide, Biochim. Biophys. Acta 854:169–183.

    Article  PubMed  CAS  Google Scholar 

  • Deuticke, B., Heller, K. B., and Haest, C. W. M., 1987, Progressive oxidative membrane damage in erythrocytes after pulse treatment with t-butylhydroperoxide, Biochim. Biophys. Acta 899:113–124.

    Article  PubMed  CAS  Google Scholar 

  • Dimitrov, D. S., 1984, Electric field-induced breakdown of lipid bilayers and cell membranes: a thin viscoelastic film model, J. Membr. Biol 78:53–60.

    Article  PubMed  CAS  Google Scholar 

  • Dressier, V., Schwister, K., Haest, C. W. M., and Deuticke, B., 1983, Dielectric breakdown of the erythrocyte membrane enhances transbilayer mobility of phospholipids, Biochim. Biophys. Acta 732:304–307.

    Article  Google Scholar 

  • Dressler, V., Haest, C. W. M., Plasa, G., Deuticke, B., and Erusalimsky, J. D., 1984, Stabilizing factors of phospholipid asymmetry in the erythrocyte membrane, Biochim. Biophys. Acta 775:189–196.

    Article  PubMed  CAS  Google Scholar 

  • Gerritsen, W. J., Henricks, W. J., De Kruijff, P. A. J., and Van Deenen, L. L. M., 1980, The transbilayer movement of phosphatidylcholine vesicles reconstituted with intrinsic proteins from the human erythrocyte membrane, Biochim. Biophys. Acta 600:607–619.

    Article  PubMed  CAS  Google Scholar 

  • Ginsburg, H., and Stein, W. D., 1987, Biophysical analysis of novel transport pathways induced in red blood cell membranes, J. Membr. Biol. 96:1–10.

    Article  PubMed  CAS  Google Scholar 

  • Glaser, R. W., Wagner, A., and Donath, E., 1986, Volume and ionic composition changes in erythrocytes after electric breakdown, Bioelectrochem. Bioenerg. 16:455–467.

    Article  CAS  Google Scholar 

  • Golan, D. E., Alecio, M. R., Veatch, W. R., and Rando, R. R., 1984, Lateral mobility of phospholipid and cholesterol in the human erythrocyte membrane: Effects of protein-lipid interactions, Biochemistry 23:332–339.

    Article  PubMed  CAS  Google Scholar 

  • Gruber, W., and Deuticke, B., 1973, Comparative aspects of phosphate transfer across mammalian erythrocyte membranes, J. Membr. Biol. 13:19–36.

    Article  PubMed  CAS  Google Scholar 

  • Haest, C. W. M., 1982, Interactions between membrane skeleton proteins and the intrinsic domain of the erythrocyte membrane, Biochim. Biophys. Acta 694:331–352.

    Article  PubMed  CAS  Google Scholar 

  • Hamaguchi, H., and Cleve, H., 1972, Solubilization and comparative analysis of mammalian erythrocyte membrane glycoproteins, Biochem. Biophys. Res. Commun. 47:459–464.

    Article  PubMed  CAS  Google Scholar 

  • Heller, K. B., Poser, B., Haest, C. W. ML, and Deuticke, B., 1984, Oxidative stress of human erythrocytes by iodate and periodate: Reversible formation of aqueous membrane pores due to SH-group oxidation, Biochim. Biophys. Acta 777:107–116.

    Article  PubMed  CAS  Google Scholar 

  • Israelachvili, J. N., 1977, Refinement of the fluid-mosaic model of membrane structure, Biochim. Biophys. Acta 469:221–225.

    Article  PubMed  CAS  Google Scholar 

  • Jacobs, M. H., 1952, The measurement of cell permeability with particular reference to the erythrocyte, in: Modern Trends in Physiology and Biochemistry (E. S. Guzman Barron, ed.), Academic Press, New York, pp. 149–171.

    Google Scholar 

  • Kinosita, K., Jr., and Tsong, T. Y., 1977a, Hemolysis of human erythrocytes by a transient electric field, Proc. Natl. Acad. Sci. USA 74:1923–1927.

    Article  PubMed  CAS  Google Scholar 

  • Kinosita, K., Jr., and Tsong, T. Y., 1977b, Voltage-induced pore formation and hemolysis of human erythrocytes, Biochim. Biophys. Acta 471:227–242.

    Article  PubMed  CAS  Google Scholar 

  • Kinosita, K., Jr., and Tsong, T. Y., 1977c, Formation and resealing of pores of controlled sizes in human erythrocyte membrane, Nature 268:438–441.

    Article  PubMed  Google Scholar 

  • Kinosita, K., Jr., Ashikawa, I., Saita, N., Yoshimura, H., Itoh, H., Nagayama, K., and Ikegami, A., 1988, Electroporation of cell membrane visualized under a pulsed-laser fluorescence microscope, Biophys, J. 53:1015–1019.

    Article  Google Scholar 

  • Knight, D. E., and Scrutton, M. C., 1986, Gaining access to the cytosol: The technique and some applications of electropermeabilization, Biochem. J. 234:497–506.

    PubMed  CAS  Google Scholar 

  • Lee, B., McKenna, K., and Bramhall, J., 1985, Kinetic studies of human erythrocyte membrane resealing, Biochim. Biophys. Acta 815:128–134.

    Article  PubMed  CAS  Google Scholar 

  • Lieber, M. R., and Steck, T. L., 1982a, A description of the holes in human erythrocyte membrane ghosts, J. Biol. Chem. 257:11651–11659.

    PubMed  CAS  Google Scholar 

  • Lieber, M. R., and Steck, T. L., 1982b, Dynamics of the holes in human erythrocyte membrane ghosts, J. Biol. Chem. 257:11660–11666.

    PubMed  CAS  Google Scholar 

  • Lindblom, G., Johansson, L. B. A., and Arvidson, G., 1981, Effect of cholesterol in membranes: Pulsed nuclear magnetic resonance measurements of lipid lateral diffusion, Biochemistry 20:2204–2207.

    Article  PubMed  CAS  Google Scholar 

  • Lindner, P., Neumann, E., and Rosenheck, K., 1977, Kinetics of permeability changes induced by electric impulses in chromaffine granules, J. Membr. Biol. 32:231–254.

    Article  PubMed  CAS  Google Scholar 

  • Lopez, A., Rols, M. P., and Teissie, J., 1988, 31P NMR analysis of membrane phospholipid organization in viable, reversibly electropermeabilized Chinese hamster ovary cells, Biochemistry 27:1222–1228.

    Article  PubMed  CAS  Google Scholar 

  • Mehrle, W., Zimmermann, U., and Hampp, R., 1985, Evidence for asymmetrical uptake of fluorescent dyes through electro-permeabilized membranes of Avena mesophyll protoplasts, FEBS Lett. 185:89–94.

    Article  CAS  Google Scholar 

  • Noordam, P. C., Van Echteld, C. J. A., de Kruijff, B., Verkleij, A. J., and de Gier, J., 1980, Barrier characteristics of membrane model systems containing unsaturated phosphatidylethanolamines, Chem. Phys. Lipids 27:221–232.

    Article  PubMed  CAS  Google Scholar 

  • Onuchi, J. F., and Lacaz-Vieira, F., 1985, Glycerol-induced baroprotection in erythrocyte membranes, Cryobiology 22:438–445.

    Article  Google Scholar 

  • Pequeux, A., Gilles, R., Pilwat, G., and Zimmermann, U., 1980, Pressure-induced variations of K +-permeability as related to a possible reversible electrical breakdown in human erythrocytes, Experientia 36:565–566.

    Article  PubMed  CAS  Google Scholar 

  • Poo, M.-m., 1981, In situ electrophoresis of membrane components, Annu. Rev. Biophys. Bioeng. 10:245–276.

    Article  PubMed  CAS  Google Scholar 

  • Pooler, J. P., 1985, The kinetics of colloid osmotic hemolysis. I. Nystatin-induced lysis, Biochim. Biophys. Acta 812:193–198.

    Article  PubMed  CAS  Google Scholar 

  • Rand, R. P., and Parsegian, V. A., 1986, Mimicry and mechanism in phospholipid models of membrane fusion, Annu. Rev. Physiol. 48:201–212.

    Article  PubMed  CAS  Google Scholar 

  • Renkin, E. M., 1955, Filtration, diffusion, and molecular sieving through porous cellulose membranes, J. Gen. Physiol. 38:225–243.

    Google Scholar 

  • Riemann, F., Zimmermann, U., and Pilwat, G., 1975, Release and uptake of haemoglobin and ions in red blood cells induced by dielectric breakdown, Biochim. Biophys. Acta 394:449–462.

    Article  PubMed  CAS  Google Scholar 

  • Sale, A. J. H., and Hamilton, W. A., 1968, Effects of high electric fields on micro-organisms, Biochim. Biophys. Acta 163:37–43.

    Article  PubMed  CAS  Google Scholar 

  • Scherer, R., and Gerhard, P., 1971, Molecular sieving by the Bacillus megaterium cell wall and protoplast, J. Bacteriol. 107:718–735.

    Google Scholar 

  • Schneider, E., Haest, C. W. M., Plasa, G., and Deuticke, B., 1986, Bacterial cytotoxins, amphotericin B and local anesthetics enhance transbilayer mobility of phospholipids in erythrocyte membranes: Consequences for phospholipid asymmetry, Biochim. Biophys. Acta 855:325–336.

    Article  PubMed  CAS  Google Scholar 

  • Schwister, K., 1985, Bildung, Charakteristika aund Ausheilverhalten elektrisch induzierter Poren in der Erythrozyten-Membran, Ph.D. thesis, RWTH Aachen.

    Google Scholar 

  • Schwister, K., and Deuticke, B., 1985, Formation and properties of aqueous leaks induced in human erythrocytes by electrical breakdown, Biochim. Biophys. Acta 816:332–348.

    Article  PubMed  CAS  Google Scholar 

  • Smith, G. K., and Cleary, St. F., 1983, Effects of pulsed electric fields on mouse spleen lymphocytes in vitro, Biochim. Biophys. Acta 763:325–331.

    Article  PubMed  CAS  Google Scholar 

  • Sowers, A. E., 1986, A long-lived fusogenic state is induced in erythrocyte ghosts by electric pulses, J. Cell Biol. 102:1–5.

    Article  Google Scholar 

  • Sowers, A. E., and Hackenbrock, C. R., 1981, Rate of lateral diffusion of intramembrane particles: Measurement by electrophoretic displacement and rerandomization, Proc. Natl. Acad. Sci. USA 78:6246–6250.

    Article  PubMed  CAS  Google Scholar 

  • Sowers, A. E., and Lieber, M. R., 1986, Electropore diameters, lifetimes, numbers, and locations in individual erythrocyte ghosts, FEBS Lett. 205:179–184.

    Article  PubMed  CAS  Google Scholar 

  • Stein, W. D., 1986, Transport and Diffusion across Cell Membranes, Academic Press/Harcourt Brace Janovich, New York.

    Google Scholar 

  • Stenger, D. A., and Hui, S. W., 1986, Kinetics of ultrastructural changes during electrically induced fusion of human erythrocytes, J. Membr. Biol. 93:43–53.

    Article  PubMed  CAS  Google Scholar 

  • Sugar, I. P., and Neumann, E., 1984, Stochastic model for electric field-induced membrane pores, Biophys. Chem. 19:211–225.

    Article  PubMed  CAS  Google Scholar 

  • Teissie, J., and Blangero, C., 1984, Direct experimental evidence of the vectorial character of the interaction between electric pulses and cells in cell electrofusion, Biochim. Biophys. Acta 775:446–448.

    Article  PubMed  CAS  Google Scholar 

  • Tournois, H., Leunissen-Bijvelt, J., Haest, C. W. M., de Gier, J., and de Kruijff, B., 1987, Gramicidin induced hexagonal HII phase formation in erythrocyte membranes, Biochemistry 26:6604–6612.

    Article  PubMed  Google Scholar 

  • Tsuji, K., and Neumann, E., 1983, Conformational flexibility of membrane proteins in electric fields. I. Ultraviolet absorbance and light scattering of bacteriorhodopsin, Biophys. Chem. 17:153–163.

    Article  PubMed  CAS  Google Scholar 

  • Van der Steen, A. T. M., de Kruijff, B., and de Gier, J., 1982, Glycophorin incorporation increases the bilayer permeability of large unilamellar vesicles in a lipid-dependent manner, Biochim. Biophys. Acta 691:13–23.

    Article  Google Scholar 

  • Verkleij, A. V., 1984, Lipidic intramembranous particles, Biochim. Biophys. Acta 779:43–63.

    Article  PubMed  CAS  Google Scholar 

  • Weaver, J. C., Harrison, G. I., Bliss, J. G., Mourant, J. R., and Powell, K. T., 1988, Electroporation: High frequency of occurrence of a transient high-permeability state in erythrocytes and intact yeast, FEBS Lett. 229:30–34.

    Article  PubMed  CAS  Google Scholar 

  • Wilbrandt, W., 1941, Osmotische Natur sogenannter nicht osmotischer Hämolysen (Kolloidosmotische Hämolyse), Pfluegers Arch. Gesamte Physiol. Menschen Tiere 245:23–52.

    Google Scholar 

  • Wright, E. M., and Diamond, J. M., 1977, Anion selectivity in biological systems, Physiol. Rev. 57:109–156.

    PubMed  CAS  Google Scholar 

  • Zimmermann, U., 1982, Electric field-mediated fusion and related electrical phenomena, Biochim. Biophys. Acta 694:227–277.

    Article  PubMed  CAS  Google Scholar 

  • Zimmermann, U., Pilwat, G., and Riemann, F., 1974, Dielectric breakdown of cell membranes, Biophys. J. 14:881–899.

    Article  PubMed  CAS  Google Scholar 

  • Zimmermann, U., Pilwat, G., Beckers, F., and Riemann, F., 1976, Effects of external electrical fields on cell membranes, Bioelectrochem. Bioenerg. 3:58–83.

    Article  CAS  Google Scholar 

  • Zimmermann, U., Vienken, J., and Pilwat, G., 1980, Development of drug carrier systems: Electrical field induced effects in cell membranes, Bioelectrochem. Bioenerg. 7:553–574.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1989 Springer Science+Business Media New York

About this chapter

Cite this chapter

Deuticke, B., Schwister, K. (1989). Leaks Induced by Electrical Breakdown in the Erythrocyte Membrane. In: Neumann, E., Sowers, A.E., Jordan, C.A. (eds) Electroporation and Electrofusion in Cell Biology. Springer, Boston, MA. https://doi.org/10.1007/978-1-4899-2528-2_8

Download citation

  • DOI: https://doi.org/10.1007/978-1-4899-2528-2_8

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4899-2530-5

  • Online ISBN: 978-1-4899-2528-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics