Advertisement

Excimer Laser Assisted Deposition of Cr and B Films

  • M. Georgopoulos
  • G. S. Fu
  • E. Hontzopoulos
  • C. Fotakis
Part of the NATO ASI Series book series (NSSB, volume 198)

Abstract

Over the last years, laser assisted CVD (LCVD) has become a popular technique for surface treatment purposes of a variety of substrates. Deposition is based on reactions which are induced pyrolytically [1] and/ or photolytically [2,3]. In particular, high power ultraviolet excimer laser induced CVD has been used for the deposition of metals [4] such as Cr, W, Mo [5,6], Al [7], semiconductors [8,9] and insulators [10] on different substates.

Keywords

Aluminum Alloy Substrate Unheated Substrate Torr Background Large Power denSities Unfocused Laser Beam 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    G. Leyendecker, D. Bäuerle, P. Geittner, H. Lydtin, Appl. Phys. Lett. 39(1901)921ADSCrossRefGoogle Scholar
  2. 2.a.
    T. F. Deutsch, D. J. Ehrlich, R.M. Osgood, Jr., Appl. Phys. Lett. 35(1979)175ADSCrossRefGoogle Scholar
  3. b.
    H. Yokoyama, F. Uesugi, S. Kishida, K. Washio, Appl. Phys. A37, (1965) 25ADSGoogle Scholar
  4. 3.
    J. Y. Tsao, D.J. Ehrlich, J. Crystal Growth 60(1904) 176Google Scholar
  5. 4.
    D. J. Ehrlich, J. Y. Tsao, J. Vac. Sci. Technol. B 1(1903) 969CrossRefGoogle Scholar
  6. 5.
    R. Solanki, P.K. Boyer, G. J. Collins, Appl. Phys. Lett. 41(1982) 1048ADSCrossRefGoogle Scholar
  7. 6.
    D.K. Flynn, J.I. Steinfeld, D. S. Sethi, J. Appl. Phys. 59(1966) 3914ADSCrossRefGoogle Scholar
  8. 7.
    T. Motooka, S. Gorbatkin, D. Lubben, D. Eres, J.E. Greene, J. Vac. Sci. Technol. A4(1986) 3146ADSGoogle Scholar
  9. 6.
    R. Solanki, G. J. Collins, Appl. Phys. Lett. 42(1983) 662ADSCrossRefGoogle Scholar
  10. 9.
    P. Balk, M. Fischer, D. Grundmann, R. Lückerath, H. Lüth, W. Richter, J. Vac. Sci. Technol. B5(1987) 1453ADSGoogle Scholar
  11. 10.
    D. J. Ehrlich, R.M. Osgood, Jr., T.F. Deutsch, J. Vac. Sci. Technol. 21(1982)23ADSCrossRefGoogle Scholar
  12. 11.
    T. M. Mayer, G. J. Fisanick, T.S. Eichelberger IV, J. Appl. Phys. 53(1982) 8462ADSCrossRefGoogle Scholar
  13. 12.a.
    D.J. Ehrlich, R.M. Osgood, Jr., T.F. Deutsch, Appl. Phys. Lett. 38 (1981) 399ADSCrossRefGoogle Scholar
  14. b.
    T.F. Deutsch, J.C.C. Fan, G.W. Turner, R.L. Chapman, D.J. Ehrlich, R.M. Osgood, Jr., Appl. Phys. Lett. 38(1981) 144ADSCrossRefGoogle Scholar
  15. c.
    D.J. Ehrlich, J.Y. Tsao, C.O. Bozler, J. Vac. Sci. Technol. B3(1985) 1Google Scholar

Copyright information

© Springer Science+Business Media New York 1989

Authors and Affiliations

  • M. Georgopoulos
    • 1
  • G. S. Fu
    • 1
    • 2
  • E. Hontzopoulos
    • 1
    • 3
  • C. Fotakis
    • 1
    • 3
  1. 1.FO.R.T.H.-Research Center of CreteInstitute of Electronic Structure & LaserIraklion, CreteGreece
  2. 2.Hebei UniversityHebeiP.R. China
  3. 3.Department of PhysicsUniversity of CreteIraklion, CreteGreece

Personalised recommendations