Model Studies of LCVD of Transition Metals on Silicon: Surface Processes

  • C. M. Friend
  • J. R. Swanson
  • F. A. Flitsch
Part of the NATO ASI Series book series (NSSB, volume 198)


Investigation of laser- and thermally-induced reactions of refractory metal complexes adsorbed on silicon surfaces is of both technological and fundamental importance. The technical goal of laser-assisted chemical vapor deposition of refractory metal films is to rapidly deposit high conductivity films that adhere well to the semiconductor substrate.1,2 In most work to date refractory metal carbonyls were used as precursors for the deposition process3–10 due to their high volatility and rich gas phase photochemistry. Unfortunately, high quality films have not been fabricated by laser-assisted deposition of refractory metals using the respective metal carbonyls; low conductivity films are formed due to the presence of carbon and/or oxygen impurities and highly porous film morphology. The impurities in the film may be incorporated during the laser deposition process from dissociation of the CO or other ligands trapped on the surface or from secondary surface reactions of molecules present in the ambient background under practical LCVD conditions.11 It is our challenge to determine the origin of the carbon and oxygen contamination and possibly suggest methods for minimizing impurities under conditions suitable for practical LCVD through systematic investigation of the deposition process itself and the reactivity of the laser-deposited films under idealized, ultra-high vacuum conditions. We have employed a combination of surface spectroscopies: multiple internal reflection Fourier transform infrared, temperature programmed desorption/reaction, laser induced desorption, and Auger electron spectroscopies and low energy electron diffraction.


Refractory Metal Metal Carbonyl Temperature Program Reaction Ultrahigh Vacuum Condition Multiple Internal Reflection 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    See, for example, D.J. Ehrlich, R.M. Osgood jr., T.F. Deutsch, IEEE J. Quantum Elec. 16 1980 1233, and references therein.ADSCrossRefGoogle Scholar
  2. 2.
    D.J. Ehrlich, J.T. Tsao, J. Vac Sci. Tech.B 1 1983 55.CrossRefGoogle Scholar
  3. 3.
    H.H. Gilgen, T. Cacouris, P.S. Shaw, R.R. Krchnavek, R.M. Osgood, Appl. Phys. B 42 1987 55.ADSCrossRefGoogle Scholar
  4. 4.
    H. Yokoyama, F. Uesugi, S. Kishida, K. Wahsio, Appl. Phys. A 37 1985 25.ADSCrossRefGoogle Scholar
  5. 5.
    N.S. Gluck, G.J. Wolga, C.E. Bartosch, Z. Ying, W. Ho, J. Appl. Phys. 61 1987 998.ADSCrossRefGoogle Scholar
  6. 6.
    S.D. Allen, A.B. Tringubo, J. Appl. Phys. 54 1983 1641.ADSCrossRefGoogle Scholar
  7. 7.
    T.M. Mayer, G.J. Fisanick, T.S. Eichelberger IV J. Appl. Phys. 53 1982 8462.ADSCrossRefGoogle Scholar
  8. 8.
    R. Solanki, P.K. Boyer, J.E. Mahan, G.J. Collins, Appl. Phys. Lett. 44 1981 572.ADSCrossRefGoogle Scholar
  9. 9.
    M.M. Oprysko, M.W. Beranek, J. Vac Sci Tech. B 5 1987 496.CrossRefGoogle Scholar
  10. 10.
    D.K. Flynn, J.I. Steinfield, J. Appl. Phys. 59 1986 3914.ADSCrossRefGoogle Scholar
  11. 11.
    K.A. Singmaster, F.A. Houle, R.J. Wilson, Appl. Phys. Lett. Submitted, 1988. Google Scholar
  12. 12.
    J.R. Swanson, C.M. Friend, Y.J. Chabal, J. Chem. Phys., 87, 1987, 5028.ADSCrossRefGoogle Scholar
  13. 13.
    See, for example, E. Weitz, J. Phys. Chem., 91, 1987, 3945, and references therein.Google Scholar
  14. 14.
    See, for example, C.M. Friend, P.A. Stevens, J.G. Serafin, E.K Baldwin, R.J. Madix, J. Chem. Phys., 87, 1987 1847, and references therein.Google Scholar

Copyright information

© Springer Science+Business Media New York 1989

Authors and Affiliations

  • C. M. Friend
    • 1
  • J. R. Swanson
    • 1
  • F. A. Flitsch
    • 1
  1. 1.Department of ChemistryHarvard UniversityCambridgeUSA

Personalised recommendations