Advertisement

Photonucleation and Photodeposition of A1 on Si from Flowing

  • J. E. Bourree
  • J. Flicstein
Part of the NATO ASI Series book series (NSSB, volume 198)

Abstract

In the past few years, the use of lasers to induce or enhance chemical reactions at gas-solid interfaces has experienced a rapid growth driven both by technological and scientific interest1,2. Laser photochemical deposition and laser direct writing of fine metal patterns from metalorganic precursors3,4 are low-temperature techniques which are fully compatible with current integrated circuit (IC) technology and can be used to repair5 and customize6 integrated circuits in situ without the need of a masking step. However very few publications7–10 have been devoted to the mechanisms of laser photochemical deposition including gas phase and adsorbed phase contributions, and particularly of photonucleation where the surface adsorbates can play the major role.

Keywords

Scanning Speed Nucleation Time Laser Direct Writing Secondary Island Carbidic Carbon 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    D. J. Ehrlich and J. Y. Tsao, J. Vac. Sci. Technol. B1, 969 (1983).Google Scholar
  2. 2.
    T. J. Chuang, Surf. Sci. Rep. 3, 1 (1983).ADSCrossRefGoogle Scholar
  3. 3.
    D. J. Ehrlich, R. M. Osgood and T. F. Deutsch, J. Vac. Sci. Technol. 21, 23 (1982).ADSCrossRefGoogle Scholar
  4. 4.
    R. M. Osgood and H. H. Gilgen, Ann. Rev. Mater. Sci. 15, 549 (1985).ADSCrossRefGoogle Scholar
  5. 5.
    J. N. Randall, D. J. Ehrlich and J. Y. Tsao, J. Vac. Sci. Technol. B3, 262 (1985).Google Scholar
  6. 6.
    J. G. Black, S. P. Doran, M. Rothschild and D. J. Ehrlich, Appl. Phys. Lett. 50, 1016 (1987).ADSCrossRefGoogle Scholar
  7. 7.
    T. H. Wood, J. C. White and B. A. Thacker, Appl. Phys. Lett. 42, 408 (1983).ADSCrossRefGoogle Scholar
  8. 8.
    J. Y. Tsao and D. J. Ehrlich, SPIE Proc. 459, 2 (1984).CrossRefGoogle Scholar
  9. 9.
    J. Y. Tsao, H. J. Zeigler and D. J. Ehrlich, Surf. Sci. 160, 419 (1985).ADSCrossRefGoogle Scholar
  10. 10.
    C. J. Chen, J. Vac. Sci. Technol. A5, 3386 (1987).ADSGoogle Scholar
  11. 11.
    J. Y. Tsao and D. J. Ehrlich, Appl. Phys. Lett. 45, 617 (1984).ADSCrossRefGoogle Scholar
  12. 12.
    G. S. Higashi and C. G. Fleming, Appl. Phys. Lett. 48, 1051 (1986).ADSCrossRefGoogle Scholar
  13. 13.
    G. S. Higashi, G. E. Blonder and C. G. Fleming, Mat. Res. Soc. Symp. Proc. 75, 117 (1987).CrossRefGoogle Scholar
  14. 14.
    J.E. Bourée and J. Flicstein, Mat. Res. Soc. Symp. Proc. 101. 55 (1988).CrossRefGoogle Scholar
  15. 15.
    T. Cacouris, G. Scelsi, P. Shaw, R. Scarmozzino, R. M. Osgood and R. R. Krchnavek, Appl. Phys. Lett. 52, 1865 (1988).ADSCrossRefGoogle Scholar
  16. 16.
    D. W. Squire, C. S. Dulcey and M. C. Lin, Chem. Phys. Lett. 116, 525 (1985).ADSCrossRefGoogle Scholar
  17. 17.
    D. W. Squire, C. S. Dulcey and M. C. Lin, J. Vac. Sci. Technol. B3, 1513 (1985).Google Scholar
  18. 18.
    T. Motooka, S. Gorbatkin, D. Lubben, D. Eres and J. E. Greene, J. Vac. Sci. Technol. A4, 3146 (1986).ADSGoogle Scholar
  19. 19.
    D. Eres, T. Motooka, S. Gorbatkin, D. Lubben and J. E. Greene, J. Vac. Sci. Technol. B5, 848 (1987).Google Scholar
  20. 20.
    D. Lubben, T. Motooka, J. E. Greene, J. F. Wendelken, J. E. Sundgren and W. R. Salaneck, Mat. Res. Soc. Symp. Proc. 101, (1988).Google Scholar
  21. 21.
    G. S. Higashi, J. Chem. Phys. 88, 422 (1988).ADSCrossRefGoogle Scholar
  22. 22.
    G. S. Higashi and L. J. Rothberg, J. Vac. Sci. Technol. B3, 1460 (1985).Google Scholar
  23. 23.
    G. S. Higashi and L. J. Rothberg, Appl. Phys. Lett. 47, 1288 (1985).ADSCrossRefGoogle Scholar
  24. 24.
    P. D. Dapkus, Ann. Rev. Mater. Sci. 12, 243 (1982).ADSCrossRefGoogle Scholar
  25. 25.
    D. H. Reep and S. K. Gandhi, J. Electrochem. Soc. 130, 675 (1983).ADSCrossRefGoogle Scholar
  26. 26.
    J.E. Bourée, J. Flicstein and Y. I. Nissim, Mat. Res. Soc. Symp. Proc. 75, 129 (1987).CrossRefGoogle Scholar
  27. 27.
    N. Suzuki, C. Anayama, K. Masu, K. Tsubouchi and N. Mikoshiba, Jap. J. Appl. Phys. 25, 1236 (1986).ADSCrossRefGoogle Scholar
  28. 28.
    J. Flicstein, J.E. Bourée, J.F. Bresse and A.M. Pougnet, Mat. Res. Soc. Symp. Proc. 101, 49 (1988).CrossRefGoogle Scholar
  29. 29.
    J. Flicstein and J.E. Bourée, MRS-Europe Symp. Proc. (1988).Google Scholar
  30. 30.
    J.E. Bourée, in “Interactions Plasmas Froids-Matériaux” (Editions de Physique, Les Ulis) p. 185 (1988).Google Scholar
  31. 31.
    J.E. Bourée and J. Flicstein, NATO ASI Series E139. 121 (1988).Google Scholar
  32. 32.
    J. Y. Tsao and D. J. Ehrlich, J. Cryst. Growth 68, 176 (1984).ADSCrossRefGoogle Scholar
  33. 33.
    Y. J. Chabal, Phys. Rev. B29, 3677 (1984).ADSGoogle Scholar
  34. 34.
    D. J. Ehrlich and R. M. Osgood, Chem. Phys. Lett. 79, 381 (1981).ADSCrossRefGoogle Scholar
  35. 35.
    G. S. Higashi, G. E. Blonder, C.G. Fleming, V. R. McCrary and V. M. Donnelly, J. Vac. Sci. Technol. B5, 1441 (1987).Google Scholar

Copyright information

© Springer Science+Business Media New York 1989

Authors and Affiliations

  • J. E. Bourree
    • 1
    • 2
  • J. Flicstein
    • 1
    • 2
  1. 1.Laboratoire de Physique des SolidesCNRSMeudonFrance
  2. 2.Laboratoire de BagneuxCNETBagneuxFrance

Personalised recommendations