Advertisement

Laser-Induced Photodissociation of A12(CH3)6: Gas-Phase and Adsorbed Layer Dissociation Mechanisms for A1 Film Growth

  • D. Lubben
  • T. Motooka
  • J. F. Wendelken
  • J. E. Greene
Part of the NATO ASI Series book series (NSSB, volume 198)

Abstract

In recent years, photolytic laser-induced chemical vapor deposition (LCVD) has become an important addition to the available thin-film growth techniques.[1] The motivation for LCVD is twofold. By focusing and rastering beams it is possible to perform highly localized growth which can be used for direct writing of patterns for microelectronics. In addition, growth over large areas can be achieved by directing a defocused beam through an appropriate gas and either over or onto a substrate. The photoreactions of primary importance for LCVD can be categorized as follows: (1) Dissociation of gas-phase molecules to provide precursors for film growth, (2) Photolysis of adsorbed species, and (3) surface irradiation leading to surface heating and possibly melting. These reactions have also been used to alter the kinetics of growth by techniques such as chemical vapor deposition (CVD)[2], metal-organic CVD (M0CVD)[3–5] and molecular beam epitaxy (MBE).[6–8]

Keywords

Auger Electron Spectroscopy Elastic Peak Auger Electron Spectroscopy Spectrum Electron Beam Exposure Antisymmetric Stretch 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    D. Bäuerlei, “Chemical Processing with Lasers”, Springer-Verlag, Berlin (1987).Google Scholar
  2. 2.
    K. Suzuki, D. Lubben and J. E. Greene, J. Appl. Phys. 58, 979 (1985).ADSCrossRefGoogle Scholar
  3. 3.
    J. B. Mullin and S. J. C. Irvine, J. Vac. Sci. Technol. A4, 700 (1986).ADSGoogle Scholar
  4. 4.
    N. H. Kararn, S. M. Bedair, N. A. El-Masry and D. Griffis, Mat. Res. Soc. Symp. Proc. vol. 75, 241 (1987).Google Scholar
  5. 5.
    V. R. McCrary and V. M. Donnelly, J. Cryst. Growth 84, 253 (1987).ADSCrossRefGoogle Scholar
  6. 6.
    R. N. Bicknell, N. C. Giles and J. F. Schetzina Appl. Phys. Lett 50, 691 (1987).ADSCrossRefGoogle Scholar
  7. 7.
    V. M. Donnelly, C. W. Tu, J. C. Beggy, V. R. McCrary, M. G. Lamont, T. D. Harris, F. A. Baiocchi and R. C. Farrow, Appl. Phys. Lett. 52, 1065 (1988).ADSCrossRefGoogle Scholar
  8. 8.
    Eisuku Tokumitsu, Takumi Yamada, Makoto Konagai and Kiyoshi Takahashi, Mat. Res. Soc. Symp. Proc. 101, 307 (1988).CrossRefGoogle Scholar
  9. 9.
    J. Haigh, J. Mat. Sci. 18, 1072 (1983)ADSCrossRefGoogle Scholar
  10. 10.
    T. Motooka, S. Gorbatkin, D. Lubben and J. E. Greene, J. Appl. Phys. 58, 4397 (1985).ADSCrossRefGoogle Scholar
  11. 11.
    T. Motooka, S. Gorbatkin, D. Lubben, Djula Eres and J.E. Greene, J. Vac. Sci. Technol. A4, 3146 (1986).ADSGoogle Scholar
  12. 12.
    D. Eres, T. Motooka, S. Gorbatkin, D. Lubben and J.E. Greene, J. Vac. Sci. Technol. B5, 848 (1987).Google Scholar
  13. 13.
    A. R. Striganov and N. S. Sventitski, “Tables of Spectral Lines of Neutral and Ionized Atoms”, Plenum, New York (1968).Google Scholar
  14. 14.
    R. W. B. Pearse and A. G. Gaydon, “The Identification of Molecular Spectra”, Chapman and Hall, London, (1976) p. 90.Google Scholar
  15. 15.
    G. Herzberg, “The Spectra and Structure of Simple Free Radicals” Cornell University, New York (1971), p. 3.Google Scholar
  16. 16.
    G. Herzberg, “Molecular Spectra and Molecular Structure III: Electronic Spectra and Electronic Structure of Polyatomic Molecules”, Van Nostrand, New York (1966).Google Scholar
  17. 17.
    D. J. Ehrlich, R. M. Osgood, Jr., and T. F. Deutsch, J. Vac. Sci. Technol. 21, 23 (1982).ADSCrossRefGoogle Scholar
  18. 18.
    C. J. Chen and R. M. Osgood, Jr., in “Laser Diagnostics and Photochemical Processing for Semiconductor Devices”, ed. by R. M. Osgood, Jr., S. R. J. Brueck and H. R. Schlosberg, Elsevier, New York (1983) p. 169.Google Scholar
  19. 19.
    D. J. Fox, D. Ray, P. C. Rubesin and H. F. Schaefer III, J. Chem. Phys. 73, 3246 (1980).ADSCrossRefGoogle Scholar
  20. 20.
    M. Stuke, Y. Zhang and S. Küper, Mat. Res. Soc. Symp. Proc. 101, 139 (1988)CrossRefGoogle Scholar
  21. 21.
    W. R. Salaneck, R. Bergman, J.-E. Sundgren, A. Rockett, T. Motooka and J. E. Greene, Surf. Sci. 198, 461 (1988).ADSCrossRefGoogle Scholar
  22. 22.
    S. Kvisle and E. Rytter, Spectrochimica Acta 40A, 939 (1984).ADSGoogle Scholar
  23. 23.
    H. Ibach and D.H. Mills, “Electron Energy Loss Spectroscopy and Surface Vibrations”, Academic Press, Inc., New York, 1982.Google Scholar
  24. 24.
    G. E. Coates, M. L. H. Green, P. Powell and K. Wade, “Principles of Organometallic Chemistry”, Mathuen, London, (1971).Google Scholar
  25. 25.
    D. R. Biswas, C. Ghosh and R. L. Layman, J. Electrochem. Soc. 130, 234 (1984).CrossRefGoogle Scholar
  26. 26.
    H. R. Philipp and E. R. Taft, Phys. Rev. 120, 37 (1960).ADSCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1989

Authors and Affiliations

  • D. Lubben
    • 1
  • T. Motooka
    • 1
  • J. F. Wendelken
    • 2
  • J. E. Greene
    • 1
  1. 1.Coordinated Science LaboratoryUniversity of IllinoisUrbanaUSA
  2. 2.Solid State DivisionOak Ridge National LaboratoryOak RidgeUSA

Personalised recommendations