Advertisement

Gas Source Molecular Beam Epitaxy

  • Morton B. Panish
Part of the NATO ASI Series book series (NSSB, volume 198)

Abstract

The replacement of the elemental sources of conventional MBE with simple compounds, first reported in 1980 [1], was initiated in order to bring the advantages of molecular beam epitaxy to the growth of GaxIn1−xAs1−yPy/InP heterostructures. These advantages center about precision in layer thickness and abruptness in doping and heterojunction interfaces. This replacement of elemental sources was necessary because III–V semiconductors containing P, and particularly As and P simultaneously, are very difficult to grow by conventional MBE. A well controlled and useful beam flux from an effusion cell containing elemental phosphorus is difficult to achieve because of the presence of allotropic forms of solid P, each having a different vapor pressure, and because condensed P vaporizes to yield P4 molecules. The morphological observations of Asahi et al [2] of InP grown with P4, and the studies of the relative incorporation of As and P during MBE of GaAs1−yPy and InAsyP1−y by Foxon et al [3], suggest that P4 has a small accommodation coefficient on the III–V surface. It is possible, of course to thermally crack P4 to P2, and P2 can readily be used for epitaxy of P containing III–V compounds. Its accommodation coefficient is approximately unity [4]. However, the generation of P2 by adding a thermal cracker to a conventional effusion oven does not eliminate the underlying stability problem and has added control problems.

Keywords

Reflection High Energy Electron Diffraction Elemental Source Effusion Cell Equilibrium Partial Pressure Group Versus Element 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    M. B. Panish, J. Electrochem. Soc. 127, 2729 (1980).CrossRefGoogle Scholar
  2. [2]
    H. Asahi, Y. Kawamura, M. Ikeda and H. Okamoto, J. Appl. Phys. 52, 2852 (1981).ADSCrossRefGoogle Scholar
  3. [3]
    C. T. Foxon, B. A. Joyce and M. T. Norris, J. Crystal Growth 49, 132 (1980).ADSCrossRefGoogle Scholar
  4. [4]
    M. B. Panish and S. Sumski, J. Appl. Phys. 55, 3571 (1984).ADSCrossRefGoogle Scholar
  5. [5]
    E. Veuhoff, W. Pletschen, P. Balk and H. Lüth, J. Cryst Growth 55, 30 (1981).ADSCrossRefGoogle Scholar
  6. [6]
    W. T. Tsang, A. N. Dayem, T. H. Chiu, J. E. Cunningham, E. F. Schubert, J. A. Ditzenburger, J. Shah, J. L. Zyskind and N. Tabatabaie, Appl. Phys. Lett. 49, 170 (1986).ADSCrossRefGoogle Scholar
  7. [7]
    M. B. Panish, J. Cryst. Growth 81, 249 (1987).ADSCrossRefGoogle Scholar
  8. [8]
    W. T. Tsang, J. Electron. Mat. 15, 235 (1986).ADSCrossRefGoogle Scholar
  9. [9]
    M. B. Panish and J. R. Arthur, J. Chem. Thermo. 2, 299 (1970).CrossRefGoogle Scholar
  10. [10]
    J. Drowart and P. Goldfinger, J. Chem. Phys. 55, 721 (1958).Google Scholar
  11. [11]
    G. J. Macur, R. K. Edwards and P. G. Wahlbeck, J. Phys. Chem. 70, 2956 (1966).CrossRefGoogle Scholar
  12. [12]
    R. Hultgren, R. L. Orr, P. D. Anderson and K. K. Kelley, “Selected Values of Thermodynamic Properties of Metals and Alloys”, John Wiley and Sons, N.Y. 1963.Google Scholar
  13. [13]
    M. B. Panish, J. Cryst. Growth 27, 6 (1974).ADSGoogle Scholar
  14. [14]
    J. R. Arthur, J. Phys. Chem. Solids 28, 2257 (1967).ADSCrossRefGoogle Scholar
  15. [15]
    C. T. Foxon, J. A. Harvey and B. A. Joyce, J. Phys Chem. Solids 34, 1693 (1973).ADSCrossRefGoogle Scholar
  16. 16]
    M. B. Panish, Prog. Cryst. Growth and Charact. 12, 1 (1986).CrossRefGoogle Scholar
  17. 17]
    W. T. Tsang, J. Cryst. Growth 81, 261 (1987).ADSCrossRefGoogle Scholar
  18. 18]
    H. Heinecke, K. Werner, M. Weyers, H. Lüth and P. Balk, J. Crystal Growth 81 270 (1987).ADSCrossRefGoogle Scholar
  19. [19]
    K. Kimura, S. Horiguchi, K. Kamon, M. Shimazu, M. Mashita, M. Mihara and M. Ishi, J. Crystal Growth 81, 276 (1987).ADSCrossRefGoogle Scholar
  20. [20]
    T. H. Chiu, W. T. Tsang, J. E. Cunningham and A. Robertson, Jr., J. Appl. Phys. 62, 2302 (1987).ADSCrossRefGoogle Scholar
  21. [21]
    J. H. Neave, B. A. Joyce, P. J. Dobson and N. Norton, Appl. Phys. A31, 1 (1983).ADSGoogle Scholar
  22. [22]
    J. M. Van Hove, C. S. Lent, P. I. Cohen, J. Vac. Sci. Technol., B1, 741 (1983).Google Scholar
  23. [23]
    Y. Kawaguchi, H. Asahi and N. Nagai, Proc. 12th Int. Conf. on GaAs and Related Compounds, Karuizawa, Japan, 1985, (Inst. Phys. London, 1986) p.79, Institute of Physics Conf. Series.Google Scholar
  24. [24]
    N. Vodjdani, A. Lamarchand and H. Paradan, J. Physique, Colloq. C5, Vol 43, 339 (1982).Google Scholar
  25. [25]
    E. Tokumitsu, Y. Kudou, M. Konagai and K. Takahashi, J. Appl. Phys. 55, 3163 (1984).ADSCrossRefGoogle Scholar
  26. [26]
    W. T. Tsang, Appl. Phys. Lett., 45, 1234 (1984).ADSCrossRefGoogle Scholar
  27. [27]
    S. Horiguchi, K. Kimura, K. Kamon, M. Mashita, M. Shimazu, M. Mihara and M. Ishi, Japan. J. Appl. Phys. 25, L979 (1986).ADSCrossRefGoogle Scholar
  28. [28]
    Y. Kawaguchi, H. Asahi, and H. Nagai, Extended Abstract, 18th Conference on Solid State Devices and Materials, Tokyo (1986) p. 619.Google Scholar
  29. [29]
    N. Kobayashi, J. L. Benchimol, F. Alexandre and Y. Gao, Appl. Phys. Lett. 51, 1907 (1987).ADSCrossRefGoogle Scholar
  30. [30]
    C. Abernathy and M. B. Panish unpublished results.Google Scholar
  31. [31]
    A. Robertson, Jr., T. H. Chiu, W. T. Tsang and J. E. Cunningham, J. Appl. Phys. July 1988, In Press.Google Scholar
  32. [32]
    E. Tokomitsu, Y. Kudou, M. Konagai and K. Takahashi, J. Appl. Phys. 55, 3163 (1984).ADSCrossRefGoogle Scholar
  33. [33]
    N. Pütz, E. Veuhoff, H. Heinecke, M. Heyen, H. Lüth and P. Balk, J Vacuum Sci. Technol. B3, 671 (1985).ADSGoogle Scholar
  34. [34]
    S. Takagishi and H. Mori, Japan J. Appl Phys. 22, L795 (1983).ADSCrossRefGoogle Scholar
  35. [35]
    N. Kobayashi and T. Fukui, Electron. Lett. 20, 887 (1984).ADSCrossRefGoogle Scholar
  36. [36]
    K. Kondo, H. Ishikawa, S. Sasa, Y. Suguyama and Y. Hiyamizu, Japan. J. Appl. Phys. 25, L52 (1986).ADSCrossRefGoogle Scholar
  37. [37]
    Y. Kawaguchi, H. Asahi and H. Nagai, Japan. J. Appl. Phys. 23, L737 (1986).CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1989

Authors and Affiliations

  • Morton B. Panish
    • 1
  1. 1.AT&T Bell LaboratoriesMurray HillUSA

Personalised recommendations