Advertisement

Surface vs Gasphase Processes in the MOCVD of GaAs

  • P. Balk
  • A. Brauers
Part of the NATO ASI Series book series (NSSB, volume 198)

Abstract

In its early years MOCVD (metal organic chemical vapor deposition) was considered a simple technique based on a straight forward mechanism leading to the production of compound semiconductor films of potentially high purity. Characteristic for this technique is the use of gaseous starting materials (usually metal organic group III compounds and group V hydrides) in a carrier gas, commonly hydrogen. It soon became apparent that the kinetics of the process contain a number of details that remain to be clarified. One of these is the relative importance of homogeneous (gas phase) and heterogeneous (surface) reactions in the overall process. There are a number of observations pointing to the catalytic role of the substrate on the dissociation of the starting materials, particularly of the group III MO compound. On the other hand, the experience from MOMBE (metal organic molecular beam epitaxy), using the same starting materials pure, i.e. without carrier, indicates that the reaction of the absorbed group III compound with the group V hydride at a substrate surface is at best a very slow process in the absence of a gas phase.

Keywords

Metal Organic Chemical Vapor Deposition Plasma Zone Metal Organic Compound Background Doping AsH3 System 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. /1/.
    C. Plass, H. Heinecke, O. Kayser, H. Lüth and P. Balk, J. Cryst. Growth, 88, 455 (1988)ADSCrossRefGoogle Scholar
  2. /2/.
    A. Brauers, O. Kayser, R. Kall, H. Heinecke, P. Balk and H. Hofmann, J. Cryst. Growth 93, (1988) 7ADSCrossRefGoogle Scholar
  3. /3/.
    P. Balk, H. Heinecke, N. Pütz, C. Plass and H. Lüth, J. Vac. Sci Technol. A4. 711 (1986)ADSGoogle Scholar
  4. /4/.
    H. Heinecke, A. Brauers, F. Grafahrend, C. Plass, N. Pütz, K. Werner, M. Weyers, H. Lüth and P. Balk, J. Cryst. Growth, 77, 303 (1986)ADSCrossRefGoogle Scholar
  5. /5/.
    A Y. Cho and W. C. Bellamy, J. Appl. Phys. 46, 783 (1975)ADSCrossRefGoogle Scholar
  6. /6/.
    G. Arens, H. Lüth, M. Heyen and P. Balk, Thin Solid Films, 136, 281 (1986)ADSCrossRefGoogle Scholar
  7. /7/.
    R M. Lum, J.K. Klingert, D.W. Kisker, D.M. Tennant, M.D. Morris, D.L. Malm, J. Kovalchick and L.A. Heimbrook, J. Electron.Mat. 17, 101 (1988)ADSCrossRefGoogle Scholar
  8. /8/.
    H. Heinecke, E. Veuhoff, N. Pütz, M. Heyen and P. Balk, J. Electron. Mat. 13, 815 (1984)ADSCrossRefGoogle Scholar
  9. /9/.
    N. Pütz, E. Veuhoff, H. Heinecke, M. Heyen, H. Lüth and P. Balk, J. Vac. Sci. Technol., B3, 671 (1985)Google Scholar
  10. /10/.
    C. Lohe and C. D. Kohl, to be publishedGoogle Scholar
  11. /11/.
    J. Nishizawa, T. Kurabayashi, H. Abe and N. Sakurai, J. Electrochem. Soc. 134, 945 (1987)CrossRefGoogle Scholar
  12. /12/.
    G. Arens, H. Heinecke, N. Pütz, H. Lüth and P. Balk J. Cryst. Growth, 76, 305/1986/ADSCrossRefGoogle Scholar
  13. /13/.
    H. Heinecke, A. Brauers, H.Lüth and P. Balk J. Cryst. Growth, 77, 241 (1986)ADSCrossRefGoogle Scholar
  14. /14/.
    A. Brauers, F. Grafahrend, H. Heinecke, H. Lüth and P. Balk, E-MRS Europe Proceedings, Symposium A, Code R-13, Advanced Materials for Telecommunications, 1986 p. 231Google Scholar
  15. /15/.
    P. Balk, M. Fischer, D. Grundmann, R Lückerath, H. Lüth and W. Richter, J. Vac. Sci. Technol. B5, 1453 (1987)ADSGoogle Scholar
  16. /16/.
    D. Grundmann, J. Wisser, R Lückerath, W. Richter, H. Lüth and P. Balk, in GaAs and related compounds, Int. Phys. Conf. Ser. No 91 (The Inst. of Physics, London/Bristol, 1988) p. 797Google Scholar
  17. /17/.
    R. Lückerath, P. Tommack, A. Hertling, H.J. Koss, P. Balk, K.F. Jensen and W. Richter, J. Cryst. Growth 93 (1988) 151CrossRefGoogle Scholar
  18. /18/.
    C.A. Larsen, N.I. Buchan and G.B. Stringfellow Appl. Phys. Lett., 52, 480 (1988)CrossRefGoogle Scholar
  19. /19/.
    J. Nishizawa and T. Kurabayashi, J. Electrochem. Soc., 130, 413 (1983)CrossRefGoogle Scholar
  20. /20/.
    S. Horiguchi, K. Kimura, S. Takagishi, K. Kamon, M. Mashita, M. Minara and M. Ishi, Jpn. J. Appl. Phys., 26, 2002 (1987)ADSCrossRefGoogle Scholar
  21. /21/.
    T.F. Kuech and E. Veuhoff, J. Cryst. Growth, 68, 148 (1984)ADSCrossRefGoogle Scholar
  22. /22/.
    S. Takagishi and H. Mori, Jpn. J. Appl. Phys., 22, L795 (1983)ADSCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1989

Authors and Affiliations

  • P. Balk
    • 1
  • A. Brauers
    • 1
  1. 1.Institute of Semiconductor ElectronicsAachen Technical UniversityAachenGermany

Personalised recommendations