Monitoring Chemical Reactions in Metal-Organic Chemical Vapour Deposition (MOCVD)

  • J. O. Williams
  • R. Hoare
  • N. Hunt
  • M. J. Parrott
Part of the NATO ASI Series book series (NSSB, volume 198)


The success of metal-organic vapour deposition (MOCVD) as a preparative technique for thin film III/V semiconductors1,2 has prompted considerable interest in the chemistry of deposition. At present, little is known concerning the reaction processes, excepting that the precursors are thermally decomposed. It is believed that surface reactions are important to both pyrolysis and MOCVD growth although relative contributions from gas phase and surface processes have not been quantified. Analysis of alkyl metal reactants and their reactions is complicated by their pyrophoric nature and their propensity towards hydrolysis by traces of moisture contained within the analytical system.


Free Radical Process Ethane Ratio Abstract Hydrogen MOCVD Growth Preparative Technique 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    N. D. Gerrard, D. J. Nicholas, J. O. Williams and A. C. Jones, Chemtronics 3: 17 (1988).Google Scholar
  2. 2.
    J. O. Williams in ““Advanced Crystal Growth””, P. M. Dryburgh, K. G. Barraclough and B. Cockayne, ed., Prentice Hall, p. 387 (1987).Google Scholar
  3. 3.
    N. I. Buchan, C. A. Larsen and G. B. Stringfellow, App.Phys.Lett., 51(13):1024 (1987).ADSCrossRefGoogle Scholar
  4. 4.
    R. Luckerath, P. Balk, M. Fischer, D. Grundmann, A. Hertling and W. Richter, Chemtronics, 2:199 (1987).Google Scholar
  5. 5.
    C. A. Larsen, N. I. Buchan and G. B. Stringfellow, J.Crystal Growth, to be published.Google Scholar
  6. 6.
    C. A. Larsen, N. I. Buchan and G. B. Stringfellow, J.Crystal Growth, 85:148 (1987).ADSCrossRefGoogle Scholar
  7. 7.
    N. Hunt and J. O. Williams, Chemtronics, 2(3):165 (1987).Google Scholar
  8. 8.
    R. Hoare and J. O. Williams, to be published.Google Scholar
  9. 9.
    P. J. Baugh, A. Cassow, M. W. Jones and A. C. Jones, Chemtronics, 2(2):93 (1987).Google Scholar
  10. 10.
    D. G. Tuck in ““Comprehensive Organometallic Chemistry””, G. Wilkinson, E. A. Abel and F. G. Stone, ed., 1:683 (1982).Google Scholar
  11. 11.
    M. Tsuda, S. Oikawa, M. Morishita and M. Mashita, Jap.J.Appi.Phys., 26(5):L564 (1987).ADSCrossRefGoogle Scholar
  12. 12.
    L. M. Fraas, P. S. McLeod, L. D. Partain and J. A. Cape, J.Vac.Sci. Technol., B4(1):22 (1986).Google Scholar
  13. 13.
    S. P. Den Baars, B. Y. Maa, P. D. Dapkus, A. D. Danner and H. C. Lee, J.Crystal Growth, 77:188 (1986).ADSCrossRefGoogle Scholar
  14. 14.
    J. E Butler, N. Bottka, R. S. Silimon and D. K. Gaskill, J.Crystal Growth, 77:163 (1986).ADSCrossRefGoogle Scholar
  15. 15.
    J. Nishizawa and T. Kurabayashi, J.Electrochem.Soc., 130:413 (1983).CrossRefGoogle Scholar
  16. 16.
    R. Luckerath, P. Tommack, A. Hertling, H. J. Kob, P. Balk, K. F. Jensen and W. Richter, J.Crystal Growth, presented at ICMOVPE—4, Hakone, Japan, 1988, to be published.Google Scholar

Copyright information

© Springer Science+Business Media New York 1989

Authors and Affiliations

  • J. O. Williams
    • 1
  • R. Hoare
    • 1
  • N. Hunt
    • 1
  • M. J. Parrott
    • 1
  1. 1.Solid State Chemistry Group and Centre for Electronic MaterialsUMISTManchesterUK

Personalised recommendations