Advertisement

Reactions Mechanisms in OMVPE Growth of GaAs Determined Using Labelling Experiments

  • G. B. Stringfellow
Part of the NATO ASI Series book series (NSSB, volume 198)

Abstract

The emergence of organometallic vapor phase epitaxy (OMVPE) as a viable commercial growth technique for III/V semiconductors has prompted renewed interest in understanding the basic growth chemistry. To date, the reactions occurring during the OMVPE growth of GaAs using TMGa and ASH3 are not fully understood. Efforts to improve the technique, including the search for new and better source materials, are dependent on obtaining a more detailed understanding of the growth kinetics.

Keywords

Pyrolysis Temperature GaAs Surface Pyrolysis Reaction Homolytic Fission Pyrolysis Mechanism 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1).
    M.G. Jacko and S.J.W. Price, Can. J. Chem. 41 1560 (1963).CrossRefGoogle Scholar
  2. 2).
    M. Yoshida, H. Watanabe, and F. Uesugi, J. Electrochem. Soc. 132 677 (1985).CrossRefGoogle Scholar
  3. 3).
    P.W. Lee, T.R. Omstead, D.R. McKenna, and K.F. Jensen, J. Crystal Growth 85 165 (1987).ADSCrossRefGoogle Scholar
  4. 4).
    C.A. Larsen, S.H. Li, N.I. Buchan, and G.B. Stringfellow, (unpublished results).Google Scholar
  5. 5).
    S.P. DenBaars, B.Y. Maa, P.D. Dapkus, A.D. Danner, and H.C. Lee, J. Crystal Growth 77 188 (1986).ADSCrossRefGoogle Scholar
  6. 6).
    M.R. Leys and H. Veenvliet, J. Crystal Growth 55 145 (1981).ADSCrossRefGoogle Scholar
  7. 7).
    J.E. Butler, N. Bottka, R.S. Sillmon, and D.K. Gaskill, J. Crystal Growth 77 163 (1986).ADSCrossRefGoogle Scholar
  8. 8).
    C.A. Larsen, N.I. Buchan, and G.B. Stringfellow, Appl. Phys. Lett. 52 480 (1988).ADSCrossRefGoogle Scholar
  9. 9).
    N.I. Buchan, C.A. Larsen, and G.B. Stringfellow, J. Crystal Growth (to be published).Google Scholar
  10. 10).
    K. Tamaru, J. Phys. Chem. 59 777 (1955).CrossRefGoogle Scholar
  11. 11).
    T.J. Cottrell The Strength of Chemical Bonds, (Butterworth, London, 1954).Google Scholar
  12. 12).
    I.A. Frolov, E.M. Kitaev, B.L. Druz, and E.B. Solokov, Russ. J. Phys. Chem. 51 651 (1977).Google Scholar
  13. 13).
    C.A. Larsen, N.I. Buchan, S.H. Li, and G.B. Stringfellow, J. Crystal Growth (to be published).Google Scholar
  14. 14).
    N.I. Buchan, S.H. Li, C.A. Larsen, and G.B. Stringfellow (unpublished results).Google Scholar
  15. 15).
    T.F. Kuech, E. Veuhoff, T.S. Kuan, V. Deline, and R. Potemski, J. Crystal Growth 77 257 (1986).ADSCrossRefGoogle Scholar
  16. 16).
    D. J. Schlyer and M.A. Ring, J. Organometallic Chem. 114 9 (1976).CrossRefGoogle Scholar
  17. 17).
    J. Nishizawa and T. Kurabayashi, J. Electrochem. Soc. 130 413 (1983).CrossRefGoogle Scholar
  18. 18).
    D.K. Gaskill, V. Kolubayev, N. Bottka, R.S. Sillmon, and J.E. Butler, J. Crystal Growth (Proceedings of ICMOVPE #4, to be published).Google Scholar
  19. 19).
    C.A. Larsen, S.H. Li, N.I. Buchan, and G.B. Stringfellow, J. Crystal Growth (to be published).Google Scholar
  20. 20).
    C.H. Chen, C.A. Larsen, and G.B. Stringfellow, Appl. Phys. Lett. 50 218 (1987).ADSCrossRefGoogle Scholar
  21. 21).
    R.K. Lum, J.K. Klingert, and M.G. Lamont, Appl. Phys. Lett. 50 284 (1987).ADSCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1989

Authors and Affiliations

  • G. B. Stringfellow
    • 1
  1. 1.Departments of Materials Science and Engineering and Electrical EngineeringUniversity of UtahSalt Lake CityUSA

Personalised recommendations