Advertisement

The Chemistry of Silicon Deposition from Hydride Decomposition

  • B. A. Scott
  • S. M. Gates
  • C. M. Greenlief
  • R. D. Estes
Part of the NATO ASI Series book series (NSSB, volume 198)

Abstract

Kinetic studies of Si CVD from SiH4 were carried out under conditions permitting separation of the process into its SiH4 and homogeneous (Si2H6, Si3H8 and higher hydride) reaction components. The reactivities of the individual species on atomically clean Si(111)−(7×7) surfaces were also measured. These experiments illustrate the information that must be obtained before attempting to model the overall CVD reaction.

Keywords

Film Growth High Silane Silicon Deposition Silicon Hydride Chemisorption Reaction 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    J. M. Jasinski, B. S. Meyerson and B. A. Scott, Ann. Rev. Phys. Chem. 38, 109 (1987).ADSCrossRefGoogle Scholar
  2. 2.
    D. W. Hess, K. F. Jensen and T. J. Anderson, Rev. Chem. Eng. 3, 97 (1985)CrossRefGoogle Scholar
  3. 3.
    B. A. Scott, R. D. Estes and D. B. Beach, “Silicon Chemistry, “ Proc. Eight Internat. Symp. Silicon Chem., Ellis Horwood Publishers, Ltd., 1987, pp. 367-375.Google Scholar
  4. 4.
    B. A. Scott, R. D. Estes and J. M. Jasinski, J. Chem. Phys. (in press).Google Scholar
  5. 5.
    S. M. Gates, Surf. Sci. 195, 307 (1988).ADSCrossRefGoogle Scholar
  6. 6.
    J. H. Purnell and R. Walsh, Proc. Royal Society A 293, 543 (1966).CrossRefGoogle Scholar
  7. 7.
    B. S. Meyerson, B. A. Scott and R. Tsui, Chemtronics 1, 150 (1986).Google Scholar
  8. 8.
    S. M. Gates, B. A. Scott, D. B. Beach, R. Imbihl, and J. E. Demuth, J. Vac. Sci. Tech. A 5, 628(1987).ADSCrossRefGoogle Scholar
  9. 9.
    R. J. Buss, P. Ho, W. G. Breiland and M. E. Coltrin, J. Appl Phys. 63, 2808 (1988).ADSCrossRefGoogle Scholar
  10. 10.
    C. G. Newman, H. E. O’Neal, M. A. Ring, F. Leska and N. Shipley, Internat. J. Chem. Kinetics XI, 1167(1979).CrossRefGoogle Scholar
  11. 11.
    B. S. Meyerson and J. M. Jasinski, J. Appl Phys. 61, 785 (1987).ADSCrossRefGoogle Scholar
  12. 12.
    B. A. Scott, W. L. Olbricht, B. A. Meyerson, J. A. Reimer and D. J. Wolford, J. Vac. Sci. Tech. A 2(2), 50 (1984), and references therein.CrossRefGoogle Scholar
  13. 13.
    C.M. Greenlief and S.M. Gates (to be published).Google Scholar
  14. 14.
    S. M. Gates, C. M. Greenlief and D. B. Beach (to be published).Google Scholar
  15. 15.
    A. M. Beers, H. T. J. M. Hintzen and J. Bloem, J. Electrochem. Soc. 130,1426 (1983).CrossRefGoogle Scholar
  16. 16.
    M.K. Farnaam and D.R. Olander, Surf. Sci. 145, 390, (1984).ADSCrossRefGoogle Scholar
  17. 17.
    R.C. Henderson and R.F. Helm, Surf. Sci. 30, 310 (1972).ADSCrossRefGoogle Scholar
  18. 18.
    F.C. Farrow, J. Electrochem. Soc. 121 899 (1974).CrossRefGoogle Scholar
  19. 19.
    B.A. Joyce, R.R. Bradley, and G.R. Booker, Phil Mag. 15 1167 (1967), and references therein.ADSCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1989

Authors and Affiliations

  • B. A. Scott
    • 1
  • S. M. Gates
    • 1
  • C. M. Greenlief
    • 1
  • R. D. Estes
    • 1
  1. 1.IBM Research DivisionThomas J. Watson Research CenterYorktown HeightsUSA

Personalised recommendations