Advertisement

Some Considerations of the Kinetics and Thermodynamics of CVD Processes

  • Michael L. Hitchman
  • Waqar Ahmed
  • Sarkis Shamlian
  • Michael Trainor
Part of the NATO ASI Series book series (NSSB, volume 198)

Abstract

For many years the growth by chemical vapour deposition of polycrystalline and amorphous layers of thin films for microelectronic applications was carried out in atmospheric pressure, cold wall reactors. At present the standard method for the growth of such layers in the semiconductor industry is by the use of low pressure (e.g. ~0.1–1 mbar) hot wall reactors1. Examples of layers currently being produced by LPCVD within the semiconductor industry include polysilicon, doped polysilicon, silicon dioxide, semi-insulating polysilicon (SIPOS), nitrogen enriched polysilicon, doped silicon dioxide and glasses, tungsten, aluminium, and silicides.

Keywords

Flow Rate Ratio Dope Silicon Dioxide Wafer Edge Heterogeneous Rate Constant Dope Polysilicon 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    M. L. Hitchman, Vacuum, 34: 377 (1984)CrossRefGoogle Scholar
  2. 2.
    M. L. Hitchman, J. Kane and A. E. Widmer, Thin Solid Films, 59: 231 (1979)ADSCrossRefGoogle Scholar
  3. 3.
    K. F. Jensen, M. L. Hitchman and W. Ahmed, in “Proc 5th European Conf. on CVD”, J-O Carlsson and J. Lindstrom, eds., Uppsala, p. 144 (1985)Google Scholar
  4. 4.
    M. L. Hitchman and J. Kane, J. Crystal Growth, 55: 485 (1981)ADSCrossRefGoogle Scholar
  5. 5.
    B. S. Meyerson, and W. Olbricht, J. Electrochem. Soc, 131: 2361 (1984)CrossRefGoogle Scholar
  6. 6.
    B. S. Meyerson, and M. L. Yu, J. Electrochem. Soc, 131: 2366 (1984)CrossRefGoogle Scholar
  7. 7.
    M. L. Hitchman, W. Ahmed, S. Shamlian and M. Trainor, Chemtronics, 2: 147 (1987)Google Scholar
  8. 8.
    R. F. C. Farrow, J. Electrochem. Soc, 121: 899 (1974)CrossRefGoogle Scholar
  9. 9.
    J. H. Purnell, and R. Walsh, Proc. Roy. Soc. A., 293: 543 (1966)ADSCrossRefGoogle Scholar
  10. 10.
    C. G. Newman, H. E. O’Neal, M. A. Ring, F. Leska and N. Shipley Int. J. Chem. Kin., 21: 1167 (1979)CrossRefGoogle Scholar
  11. 11.
    S. M. Gates, D. B. Beach, R. Inbihl, B. A. Scott and J. E. Denmuth, J. Vac Sci. Technol., 5: 628 (1987)ADSCrossRefGoogle Scholar
  12. 12.
    P. John and J. H. Purnell, J. Chem. Soc, 69: 1455 (1973)Google Scholar
  13. 13.
    G. Inoue and M. Suzuki, Chem. Phys. Letts., 122: 361 (1985)ADSCrossRefGoogle Scholar
  14. 14.
    J. M. Jasinski and J. O. Chu, J. Chem. Phys., in press, (1988)Google Scholar
  15. 15.
    S. Nakayama, H. Yonezawa and J. Murota, Jap. J. Appl. Phys. 23: L493 (1984)ADSCrossRefGoogle Scholar
  16. 16.
    J. R. Acton and P. T. Squire, “Solving Equations with Physical Understanding”, Adam Hilger, Bristol, (1985)Google Scholar

Copyright information

© Springer Science+Business Media New York 1989

Authors and Affiliations

  • Michael L. Hitchman
    • 1
  • Waqar Ahmed
    • 1
  • Sarkis Shamlian
    • 1
  • Michael Trainor
    • 1
  1. 1.Department of Pure and Applied ChemistryUniversity of StrathclydeGlasgowUK

Personalised recommendations