Skip to main content

Analysis of Sensory Spike Trains

  • Chapter
Neurobiology of Sensory Systems
  • 184 Accesses

Abstract

The neuron network of the vertebrate retina processes signals by means of graded potentials, whose complex end products are encoded into spike trains by ganglion cells. Spike discharges are the means of long-distance communication from the retina, and are ubiquitous means of cell-to-cell communication in the central nervous system. Generation of an action potential is a highly nonlinear process, which depends upon the threshold in all-or-none fashion. Biophysical properties underlying the generation of an action potential have been a fundamental problem of membrane physiology; in the last few decades, great strides have been made in this field.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • de Boer, E. and Kuyper, P. 1968, Triggered correlation. IEEE. Trans. Biomed. Eng. 15: 169–179.

    Article  PubMed  Google Scholar 

  • Dowling, J. E. and Boycott, B.B. 1966, Organization of the primate retina: electron microscopy. Proc. R. Soc. Lond. B.Biol. Sci. 166: 80–111.

    Article  PubMed  CAS  Google Scholar 

  • Dowling, J. E. and Werblin, F.S. 1969, Organization of retina of the mudpuppy Necturus maculosus. I. Synaptic structure. J. Neurophysiol. 32: 315–338.

    PubMed  CAS  Google Scholar 

  • Marmarelis, V. Z., Citron, M. C., and Vivo, C. 1986, Minimum-order Wiener modeling of spike-ooutput system. Biol. Cybern. 54: 115–124.

    Article  PubMed  CAS  Google Scholar 

  • Sakai, H. M. and Naka, K.-I. 1987a, Signal transmission in the catfish retina. IV. transmission to ganglion cells. J. Neurophysiol. 58: 1307–1328.

    PubMed  CAS  Google Scholar 

  • Sakai, H. M. and Naka, K.-I. 1987b, Signal transmission in the catfish retina. V. Sensitivity and circuit. J. Neurophysiol. 58: 1329–1350.

    PubMed  CAS  Google Scholar 

  • Sakai, H. M. and Naka, K.-I. 1988a, Dissection of the neuron network in the catfish inner retina. I. Transmission to ganglion cells. J. Neurophysiol. 60: 1549–1567.

    PubMed  CAS  Google Scholar 

  • Sakai, H. M. and Naka, K.-I. 1988b, Dissection of the neuron network in the catfish inner retina. II. Interactions between ganglion cells. J. Neurophysiol. 60: 1568–1583.

    PubMed  CAS  Google Scholar 

  • Sakai, H.M., Naka, K.-I. and Dowling, J. E. 1986, Ganglion cell dendrites are presynaptic in catfish retina. Nature Lond. 319: 495–497.

    Article  PubMed  CAS  Google Scholar 

  • Sakuranaga, M. and Naka, K.-I. 1985a, Signal transmission in catfish retina. I. Transmission in the outer retina. J. Neurophysiol. 53: 373–389.

    PubMed  CAS  Google Scholar 

  • Sakuranaga, M. and Naka, K.-I. 1985b, Signal transmission in catfish retina. II. Transmission to type-N cells. J. Neurophysiol. 53: 390–410.

    PubMed  CAS  Google Scholar 

  • Sakuranaga, M. and Naka, K.-I. 1985c, Signal transmission in catfish retina. III. Transmission to type-C cells. J. Neurophysiol. 53: 411–428.

    PubMed  CAS  Google Scholar 

  • Sakuranaga, M., Ando, Y.-I. and Naka, K.-I. 1987, Dynamics of ganglion-cell response in the catfish and frog retina. J. Gen. Physiol. 90: 229–259.

    Article  PubMed  CAS  Google Scholar 

  • Victor, J. D. and Shapley, R. M. 1979, The nonlinear pathway of Y ganglion cells in the cat retina. J. Gen. Physiol. 74: 671–687.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1989 Springer Science+Business Media New York

About this chapter

Cite this chapter

Sakai, H.M. (1989). Analysis of Sensory Spike Trains. In: Singh, R.N., Strausfeld, N.J. (eds) Neurobiology of Sensory Systems. Springer, Boston, MA. https://doi.org/10.1007/978-1-4899-2519-0_4

Download citation

  • DOI: https://doi.org/10.1007/978-1-4899-2519-0_4

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4899-2521-3

  • Online ISBN: 978-1-4899-2519-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics