Drosophila Homologs of Vertebrate Sodium Channel Genes

  • Mani Ramaswami
  • Ali Lashgari
  • Mark A. Tanouye


We have screened D. melanogaster genomic libraries for sequences similar to vertebrate sodium channel genes. We describe two transcription units that are strikingly homologous to a rat sodium channel cDNA and are conserved in a phylogenetically distant species of Drosophila, D. virilis. They appear to encode the major subunits of two distinct sodium channel proteins. A partial sequence for one of these has been previously reported (Salkoff et al., 1987a). The other transcription unit maps to position 14C/D, close to the paralyzed (para) gene. Mutations in para have previously been shown to affect excitability in the central and peripheral nervous systems of Drosophila (Ganetzky and Wu, 1986; Burg and Wu, 1986). Sequence comparisons suggest that both genes might have arisen before the divergence of vertebrate and invertebrate species. This finding has implications for the diversity of sodium channels in invertebrate and vertebrate nervous systems.


Sodium Channel Potassium Channel Channel Gene Polytene Chromosome Genomic Clone 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Aulds, V.J., Goldin, A., Krafte, D., Marshall, J., Dunn, J.M., Catterall, W.A., Lester, H.A., Davidson, N. and Dunn, R.J., 1988. A rat brain sodium channel alpha subunit with altered voltage responses. Neuron, 1: 449–461.CrossRefGoogle Scholar
  2. Barchi, R.L., (1987). Sodium channel diversity: subtle variations on a complex theme. TINS. 10: 221–223.Google Scholar
  3. Barres, B.A., Chun, L.L.Y. and Corey, D.P., 1987. Are glial and neuronal sodium channels the same? Soc Neurosci. Abs., 1:577.Google Scholar
  4. Baumann, A., Krah-Jentgens, I., Mueller, R., Mueller-Holtkamp, F., Seidel, R., Kecskemethy, N., Ferrus, A. and Pongs, O., 1987. Molecular organization of the maternal effect region of the Shaker complex of Drosophila: characterization of an IA channel transcript with homology to vertebrate sodium channels. EMBO J., 6: 3419–3429.PubMedGoogle Scholar
  5. Benshalom, G. and Dagan, D., 1981. Electrophysiological analysis of the temperature sensitive paralytic Drosophila mutant, para ts. J. Comp. Phys., 144: 409–417.CrossRefGoogle Scholar
  6. Burg, M.G. and Wu, C.F., 1986. Differentiation and Central Projections of Peripheral Sensory Cells with Action-Potential Block in Drosophila Mosaics. J. Neurosci., 6(10): 2968–2976.PubMedGoogle Scholar
  7. Catterall, W.A., 1986. Molecular properties of voltage-gated sodium channels. Ann. Rev. Biochem. 55: 953–985.PubMedCrossRefGoogle Scholar
  8. Davis, R.W., Botstein, D. and Roth, J.R., 1980. Advanced bacterial genetics. A manual for genetic engineering. (Cold Spring Harbor, New York: Cold Spring Harbor Laboratory).Google Scholar
  9. Feinberg, A.P. and Vogelstein, B., 1983. A technique for radiolabelling DNA restriction endonuclease fragments to high specific activity. Anal. Biochem., 132: 6–13.PubMedCrossRefGoogle Scholar
  10. Frigerio, G., Burri, M., Bopp, D., Baumgartner, S. and Noll, M., 1986. Structure of the segmentation gene paired and the Drosophila prd gene as a part of a gene network. Cell, 47: 735–746.PubMedCrossRefGoogle Scholar
  11. Ganetzky, B., 1984. Genetics of membrane excitability in Drosophila: lethal interactions between two temperature sensitive paralytic mutations. Genetics, 108: 897–911.PubMedGoogle Scholar
  12. Ganetzky, B., 1986. Neurogenetic analysis of Drosophila mutations affecting sodium channels: synergistic effects on viability and nerve conduction in double mutants involving tip-E. J. Neurogenet., 3: 19–31.PubMedCrossRefGoogle Scholar
  13. Ganetzky, B., Loughney, K. and Wu, C.F., 1986. Analysis of mutations affecting sodium channels in Drosophila. In Tetrodotoxin, Saxitoxin and the molecular biology of the sodium channel, ed. C.Y. Kao, S.R. Levinson. New York: NY. Acad. Science, pp 325–327.Google Scholar
  14. Ganetzky, B. and Wu, C.F., 1982. Indirect suppression involving behavioral mutants with altered nerve excitability in Drosophila melanogaster. Genetics, 100: 597–614.PubMedGoogle Scholar
  15. Ganetzky, B. and Wu, C.F., 1986. Neurogenetics of membrane excitability in Drosophila. Ann. Rev. Genet., 20: 3–44.CrossRefGoogle Scholar
  16. Guy, H. and Seetharamulu, P., 1986. Molecular model of the action potential sodium channel. Proc. Natl. Acad. Sci. U.S.A., 83: 508–512.PubMedCrossRefGoogle Scholar
  17. Haimovich, B., Schotland, D.L., Fieles, W.E. and Barchi, R.L., 1987. Localization of sodium channel subtypes in adult rat skeletal muscle using channel specific monoclonal antibodies. J. Neurosci., 7: 2957–2966.PubMedGoogle Scholar
  18. Hille, B. (1984). Ionic channels of excitable membranes. (Sunderland, Ma: Sinauer).Google Scholar
  19. Iverson, L.E., Tanouye, M.A., Davidson, N.A., Lester, H.A. and Rudy, B.R., 1988. Expression of A-type potassium channels from Shaker cDNAs. Proc. Natl. Acad. Sci. U.S.A., 85: 5723–5727.PubMedCrossRefGoogle Scholar
  20. Jackson, F.R., Wilson, S.D. and Hall, L.M., 1986. The tip-E mutation of Drosophila decreases saxitoxin binding and interacts with other mutations affecting nerve membrane excitability. J. Neurogenet., 3: 1–17.PubMedCrossRefGoogle Scholar
  21. Jaimovich, E., Ildefonse, M., Barnahim, J., Rougier, O. and Lazdunsky, M., 1982. Centruriodes toxin, a selective blocker of surface sodium channels in skeletal muscle: voltage clamp analysis and biochemical characterization of the receptor. Proc. Natl. Acad. Sci. U.S.A.. 79: 3900–3986.CrossRefGoogle Scholar
  22. Kamb, A., Iverson, L.E. and Tanouye, M.A., 1987. Molecular characterization of Shaker, a Drosophila gene that encodes a potassium channel. Cell, 50: 405–413.PubMedCrossRefGoogle Scholar
  23. Kamb, A., Tseng-Crank, J. and Tanouye, M.A., 1988. Multiple products of the Drosophila Shaker gene contribute to potassium channel diversity. Neuron, 1: 421–430.PubMedCrossRefGoogle Scholar
  24. Llinas, R. and Sugumori, M., 1980. Electrophysiological properties of in vitro purkinje cell somata in mammalian cerebellar slices. J. Phys., 305: 171–195.Google Scholar
  25. Loughney, K. and Ganetzky, B., 1988. The Drosophila para locus is a sodium channel structural gene. Soc. Neurosci. Abs. 14:577.Google Scholar
  26. Maniatis, T., Fritsch, E.F., and Sambrook, J., 1982. Molecular cloning: A Laboratory Manual (Cold Spring Harbor, New York: Cold Spring Harbor Laboratory).Google Scholar
  27. McGuiness, W., Levine, M.S., Hafen, E., Kuroiwa, A. and Gehring, W.J., 1984. A conserved DNA sequence in homeotic genes of the Drosophila Antennapoedia and Bithorax complexes. Nature, 308: 428–433.CrossRefGoogle Scholar
  28. Nelson, J. and Baird, D.H., 1985. Action potentials persist at restrictive temperatures in temperature sensitive paralytic mutants of adult Drosophila. Soc. Neurosci. Abs., 11:313.Google Scholar
  29. Noda, M., Ikeda, T., Kayano, T., Suzuki, H., Takeshima, H., Kurasaki, M., Takahashi, H. and Numa, S., 1986a. Existence of distinct sodium channel messenger RNAs in rat brain. Nature, 320: 188–192.PubMedCrossRefGoogle Scholar
  30. Noda, M., Ikeda, T., Suzuki, H., Takeshima, H., Takahashi, T., Kuno, M. and Numa, S., 1986b. Expression of functional sodium channels from cloned cDNA. Nature, 322: 826–828.PubMedCrossRefGoogle Scholar
  31. Noda, M., Shimizu, S., Tanabe, T., Takai, T., Kayano, T., Ikeda, T., Takahashi, H., Nakayama, Y., Kanaoka, Y., Minamino, N., Kangawa, K., Matsuo, H., Raftery, M.A., Hirose, T., Inayama, S., Hayashida, H., Miyata, T. and Numa, S., 1984. Primary structure of the Electrophorus electricus sodium channel deduced from cDNA sequence. Nature, 312: 121–127.PubMedCrossRefGoogle Scholar
  32. O’Dowd, D., Germeraad, S. and Aldrich, R., 1987. Expression of sodium currents in embryonic Drosophila neurons: differential reduction by alleles of the para locus. Soc. Neurosci. Abs., 13:577.Google Scholar
  33. O’Tousa, J.E., Baehr, W., Martin, R.L., Hirsch, J., Pak, W.L. and Applebury, M.L., 1985. The Drosophila ninaE gene encodes an opsin. Cell, 40: 839–850.PubMedCrossRefGoogle Scholar
  34. Papazian, D.M., Schwarz, T.L., Tempel., Jan, Y.N. and Jan, L.Y., 1987. Cloning of genomic and complementary DNA sequences from Shaker, a putative potassium channel gene. Science, 237: 749–753.PubMedCrossRefGoogle Scholar
  35. Pardue, M., and Gall, J., 1975. Nucleic Acid Hybridizations to the DNA of Cytological Preparations. In Methods in Cell Biology, Vol 10, D. Prescott, ed. (New York; Academic Press), pp 1–17.Google Scholar
  36. Rudy, B., 1988. Diversity and ubiquity of potassium channels. Neuroscience. 25: 729–749.PubMedCrossRefGoogle Scholar
  37. Salkoff, L., Butler, A., Wei, A., Scavarda, N., Giffen, K., Ifune, K., Goodman, R. and Mandel, G., 1987a. Genomic organization and deduced amino acid sequence of a putative sodium channel gene in Drosophila. Science, 237: 744–749.PubMedCrossRefGoogle Scholar
  38. Salkoff, L., Butler, A., Scavarda. N. and Wei, A., 1987b. Nucleotide sequence of the putative sodium channel gene from Drosophila: the four homologous domains. Nucleic Acids Res., 15: 8569–8573.PubMedCrossRefGoogle Scholar
  39. Schwarz, T.L., Tempel, B.L., Papazian, D.M., Jan, Y.N. and Jan L.Y., 1988. Multiple potassium-channel components are produced by alternate splicing at the Shaker locus in Drosophila. Nature, 331: 137–142.PubMedCrossRefGoogle Scholar
  40. Siddiqi, O. and Benzer, S., 1976. Neurophysiological defects in temperature sensitive paralytic mutants of Drosophila melanogaster. Proc. Natl. Acad. Sci. U.S.A., 73: 3253–3257.PubMedCrossRefGoogle Scholar
  41. Suzuki, N. and Wu, C.F., 1984. Altered sensitivity to sodium channel specific neurotoxins in cultured neurons from temperature sensitive paralytic mutants of Drosophila. J. Neurogenetics, 1: 225–238.CrossRefGoogle Scholar
  42. Suzuki, D.T., Grigliatti, T. and Williamson, R., 1971. Temperature sensitve mutations in Drosophila melanogaster, VII. A mutation (para ts) causing reversible adult paralysis. Proc. Natl. Acad. Sci. U.S.A., 68: 890–893.PubMedCrossRefGoogle Scholar
  43. Tanabe., T., Takeshima, H., Mikami, A., Flockerzi, V., Takahashi, H., Kangawa, K., Konjima, M., Matsuo, M., Hirose, T. and Numa, S., 1987. Primary structure of the receptor for calcium channel blockers from skeletal muscle. Nature, 328: 313–318.PubMedCrossRefGoogle Scholar
  44. Tanouye, M.A., Kamb, C.A., Iverson, L.E., and Salkoff, L., 1986. Genetics and molecular biology of ionic channels in Drosophila. Ann. Rev. Neurosci., 9: 225–276.CrossRefGoogle Scholar
  45. Tempel, B.L., Papazian, D.M., Schwarz, T.M., Jan, Y.N. and Jan, L.Y., 1987. Sequence of a probable potassium channel component encoded at the Shaker locus of Drosophila. Science, 237: 770–775.PubMedCrossRefGoogle Scholar
  46. Timpe, L.C., Schwarz, T.L., Tempel, B.L., Papazian, D.M., Jan, Y.N. and Jan, L.Y., 1988. Expression of functional potassium channels from Shaker cDNA in Xenopus oocytes. Nature, 331: 143–145.PubMedCrossRefGoogle Scholar
  47. Williamson, R., Kaplan, D.W and Dagan, D., 1974. A fly’s leap from paralysis. Nature, 252: 224–226.PubMedCrossRefGoogle Scholar
  48. Wu, C.F. and Ganetzky, 1980. Genetic alteration of nerve membrane excitability in temperature-sensitive paralytic mutants of Drosophila melanogaster. Nature, 286: 814–816.PubMedCrossRefGoogle Scholar
  49. Zuker, C.S., Cowman, A.F. and Rubin, G.M., 1985. Isolation and structure of a rhodopsin gene from D. melanogaster. Cell, 40: 851–858.PubMedCrossRefGoogle Scholar
  50. Zwiebel, L.J., Cohn, V.H., Wright, D.R. and Moore, G.P., 1982. Evolution of single-copy DNA and the ADH gene in seven Drosophilids. J. Mol. Evol. 19: 62–71.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1989

Authors and Affiliations

  • Mani Ramaswami
    • 1
  • Ali Lashgari
    • 1
  • Mark A. Tanouye
    • 1
  1. 1.Division of BiologyCalifornia Institute of Technology, 216-76PasadenaUSA

Personalised recommendations