Skip to main content

Early Visual Processing in the Compound Eye: Physiology and Pharmacology of the Retina-Lamina Projection in the Fly

  • Chapter
Neurobiology of Sensory Systems

Abstract

The defined physiology and anatomy of the retina and the first optic ganglion of the fly provide an excellent opportunity to study the neural mechanisms responsible for early visual processing. Intracellular recordings from an intact preparation have been used to analyse synaptic transfer from the photoreceptors to a major class of second order neurones, the large monopolar cells (LMCs). Coding is optimised to protect pictorial information from contamination by the noise generated at the photoreceptor synapses. Optimisation involves processes of amplification and antagonism that are matched to the statistical properties of images. Having derived a detailed description of coding, we are investigating the underlying physiological and pharmacological mechanisms. The synaptic transfer function has been determined by precise measurements of the responses of photoreceptors and LMCs to identical stimuli; noise analysis identifies a significant contribution of synaptic noise to the postsynaptic signal. Single-electrode current clamp analysis of the LMCs shows that their membranes are approximately Ohmic, so that voltage sensitive mechanisms play little role in signal-shaping. To a first approximation, LMC “on” responses can be described in terms of a single chloride conductance activated by the photoreceptor neurotransmitter, however, the depolarising transient generated at light “off” involves additional depolarizing mechanisms. Lateral inhibition is associated with a conductance decrease thus suggesting a presynaptic mechanism, and is under dynamic control, developing rapidly at the onset of light adaptation. It may vary in strength between different classes of LMC. Ionophoretic studies indicate that histamine mimics the photoreceptor neurotransmitter and the photoreceptor terminals show histamine-like immunoreactivity. This represents the first case of histaminergic neurotransmission in insects, and a pharmacological profile of the putative histamine receptors indicates that they are of a novel class. Immunocytochemical and ionophoretic studies also indicate the involvement of a number of classical neurotransmitters in other lamina interneurones.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Autrum, H., Zettler, F. and Järvilehto, M. 1970. Postsynaptic potentiuals from a single neuron of the ganglion opticum I of the blowfly Calliphora erythrocephala. Z. vergl. Physiol., 48: 357–384.

    Article  Google Scholar 

  2. Blight, A.R. and Llinas, R., 1980. The non-impulsive stretch-receptor complex of the crab: a study of depolarization-relesase coupling at a tonic sensorimotor synapse. Phil. Trans. R. Soc. Lond. B, 212: 1–34

    Google Scholar 

  3. Buchner, E., Buchner, S., Crawford, G., Mason, W.T., Salvaterra, P.M. and Sattelle, D.B. 1986. Choline acetyltransferase-like immunoreactivity in the brain of Drosophila melanogaster. Cell Tissue Res., 246: 57–62.

    Article  CAS  Google Scholar 

  4. Burrows, M. 1979. Synaptic potentials effect the release of transmitter from locust non-spiking interneurons. Science, 204: 81–83

    Article  PubMed  CAS  Google Scholar 

  5. Chase, B.A. and Kankel, D.R. 1987. A genetic analysis of glutamatergic function in Drosophila. J. Neurobiol., 18: 15–41.

    Article  PubMed  CAS  Google Scholar 

  6. Chi, C. and Carlson, S.D. 1976, Close apposition of photoreceptor axons in the housefly. J. Insect. Physiol. 22: 1153–1156.

    Article  PubMed  CAS  Google Scholar 

  7. Datum, K-H., Weiler, R. and Zettler, F. 1986. Immunocytochemical demonstration of-amino butyric acid and glutamic acid decarboxylase in R7 photoreceptors and C2 centrifugal fibres in the blowfly visual system. J. comp. Physiol., 159: 241–249.

    Article  CAS  Google Scholar 

  8. Dubs, A. 1982. The spatial integration of signals in the retina and lamina of the fly compound eye under different conditions of luminance. J. comp. Physiol. 146: 321–343.

    Article  Google Scholar 

  9. Dubs, A., Laughlin, S.B. and Srinivasan, M.V. 1981. Single photon signals in fly photoreceptors and first order interneurones at behavioural threshold. J. Physiol., 317: 317–334.

    PubMed  CAS  Google Scholar 

  10. Elias, M.S. and Evans, P.D. 1983. Histamine in the insect nervous system: distribution, synthesis and metabolism. J. Neurochem., 41: 562–568.

    Article  PubMed  CAS  Google Scholar 

  11. Fain, G.L. and Lisman, J.E. 1981. Membrane conductances of photoreceptors. Prog. Biophys. molec. Biol., 37: 91–147.

    Article  CAS  Google Scholar 

  12. Franceschini, N. 1975. Sampling of the visual environment by the compound eye of the fly: Fundamentals and applications, pp. 98–125. In: Photoreceptor Optics. Snyder, A.W. and Menzel, R. eds. Springer, Berlin Heidelberg New York.

    Chapter  Google Scholar 

  13. Gonzalez, R.C. and Wintz, P. 1977. Digital image processing. Addison Wesley, Reading Mass

    Google Scholar 

  14. Gorczyca, M.G. and Hall, J.C. 1987. Immunohistochemical localization of choline acetyltransferase during development and in Chats mutants of Drosophila melanogaster. J. Neurosci., 7: 1361–1369.

    PubMed  CAS  Google Scholar 

  15. Greenspan, R.J. 1980. Mutations of choline acetyltransferase and associated neural defects in Drosophila melanogaster. J. comp. Physiol. 137: 83–92.

    Article  CAS  Google Scholar 

  16. Greenspan, R.J., Finn, J.A. and Hall, J.C. 1980. Acetylcholinesterase mutants in Drosophila and their effects on the structure and function of the central nervous system. J. comp. Neurol., 189: 741–774.

    Article  PubMed  CAS  Google Scholar 

  17. Guy, R.G. and Srinivasan, M.V. 1988. Integrative properties of second-order visual neurons: a study of large monopolar cells in the dronefly Eristalis. J. Comp. Physiol. A, 162: 317–332.

    Article  Google Scholar 

  18. Hall, J.C. 1982. Genetics of the nervous system in Drosophila. Q. Rev. Biophys., 15: 223–479.

    Article  PubMed  CAS  Google Scholar 

  19. Hardie, R.C. 1985. Functional organization of the fly retina, pp. 1–79. In: Ottoson, D. ed. Prog. sensory physiology Vol. 5. Springer, Berlin, Heidelberg, New York, Toronto

    Chapter  Google Scholar 

  20. Hardie, R.C. 1987. Is histamine a neurotransmitter in insect photoreceptors? J. comp. Physiol., 161: 201–213.

    Article  CAS  Google Scholar 

  21. Hardie, R.C. 1988a. Neurotransmitters in compound eyes, pp. 235–256. In: Facets of Vision. Stavenga D.G., Hardie R.C. (eds.). Springer, Berlin Heidelberg New York Toronto.

    Google Scholar 

  22. Hardie, R.C. 1988b. Effects of antagonists on putative histamine receptors in the first visual neuropile of the housefly (Musca domestica). J. Exp. Biol., 138: 221–241.

    CAS  Google Scholar 

  23. Hateren, J.H. van 1986a. Electrical coupling of neuro-ommatidial photoreceptor cells in the blowfly. J. comp. Physiol. 159: 795–811.

    Article  Google Scholar 

  24. Hateren, J.H. van 1986b. An efficient algorithm for cable theory, applied to blowfly photoreceptor cells and LMCs. Biol. Cybern., 54: 301–311.

    Article  Google Scholar 

  25. Hayashi, J.H., Moore, J.W. and Stuart, A.E. 1985. Adaptation in the input-output relation of the synapse made by the barnacle photoreceptor. J. Physiol., 368: 179–195.

    PubMed  CAS  Google Scholar 

  26. Järvilehto M. 1985. The eye: vision and perception, pp. 355-429. In: Comprehensive insect physiology, biochemistry and pharmacology. Kerkut, G.A. and Gilbert, L.I. eds. Pergamon Oxford

    Google Scholar 

  27. Katz, B. and Miledi R. 1967. A study of synaptiuc transmission in the absence of nerve impulses. J. Physiol. Lond., 224: 655–699

    Google Scholar 

  28. Kuwabara, M. and Naka K. 1959. Responses of a single retinula cell to polarized light. Nature, 184: 455–456

    Article  PubMed  Google Scholar 

  29. Laughlin, S.B. 1974. Resistance changes associated with the response of insect monopolar neurons. Z. Naturforsch., 29c:449–450

    Google Scholar 

  30. Laughlin, S.B. 1981a. Neural principles in the peripheral visual systems of invertebrates In: Handbook of sensory physiology Vol VII/6b. Autrum, H. ed pp. 133–280 Springer, Berlin Heidelberg NewYork.

    Google Scholar 

  31. Laughlin, S.B. 1981b. A simple coding procedure enhances a neuron’s information capacity. Z. Naturforsch. 36c:910–912

    Google Scholar 

  32. Laughlin, S.B. 1987. Form and function in retinal processing. Trends Neurosci. 10: 478–483.

    Article  Google Scholar 

  33. Laughlin, S.B. and Hardie, R.C. 1978. Common strategies for light adaptation in the peripheral visual systems of fly and dragonfly, J. Comp. Physiol. 128: 319–340.

    Article  Google Scholar 

  34. Laughlin, S.B. and Osorio, D. 1989. Mechanisms for neural signal enhancement in the blowfly compound eye. (submitted).

    Google Scholar 

  35. Laughlin, S.B., Howard, J. and Blakeslee, B. 1987. Synaptic limitations to contrast coding in the retina of the blowfly Calliphora. Proc. Roy. Soc. Lond. B, 231: 437–467.

    Article  CAS  Google Scholar 

  36. Lipetz, L.E. 1971. The relation of physiological and psychological aspects of sensory intensity. In: Handbook of sensory physiology Vol. I (Loewenstein W.R. ed.) pp. 191–225. Springer Berlin Heidelberg New York

    Google Scholar 

  37. McCaman, R.E. and Weinreich, D. 1985. Histaminergic synaptic transmission in the cerebral ganglion of Aplysia. J. Neurophysiol. 53: 1016–1037.

    PubMed  CAS  Google Scholar 

  38. Maxwell, G.D., Tait J.F. and Hildebrand J.G. 1978. Regional synthesis of neurotransmitter candidates of the moth Manduca sexta. Comp. Biochem. Physiol. 61C:109–119.

    CAS  Google Scholar 

  39. Meyer, E.P., Matute, C., Streit, P. and Nässel, D.R. 1986. Insect optic lobe neurons identifiable with monoclonal antibodies to GABA. Histochem. 84: 207–216.

    Article  CAS  Google Scholar 

  40. Mitzunami, M., Yamashita, S. and Tatea, H. 1987. Calcium-dependent action potentials in the second-order neurones of cockroach ocelli. J. Exp. Biol., 130: 259–274.

    Google Scholar 

  41. Muijser, H. 1979. The receptor potential of retinular cells of the blowfly Calliphora: The role of sodium, potassium and calcium ions. J. Comp. Physiol. 132: 87–95.

    Article  CAS  Google Scholar 

  42. Nässel, D.R. 1987. Serotonin and serotonin-immunoreactive neurons in the nervous system of insects. Prog. Neurobiol., 30: 1–85.

    Article  Google Scholar 

  43. Nässel, D.R., Ohlsson, L. and Sivasubramanian P. 1983. A new possibly serotonergic neuron in the lamina of the blowfly optic lobe: an immunocytochemical and Golgi-EM study. Brain Res., 280: 361–367.

    Article  PubMed  Google Scholar 

  44. Nässel, D.R., Holmqvist, M.H., Hardie, R.C, Hakånson. R. and Sundler, F. 1988. Histamine-like immunoreactivity in photoreceptors of the compound eyes and ocelli of flies. Cell Tissue Res., 253: 639–646.

    Article  PubMed  Google Scholar 

  45. Nicol, D. and Meinertzhagen, I.A. 1982. An analysis of the number and composition of the synaptic populations formed by photoreceptors of the fly. J. Comp. Neurol., 207: 29–44.

    Article  PubMed  CAS  Google Scholar 

  46. Pollard, H. and Schwartz, J-C. 1987. Histamine neuronal pathways and their functions. Trends Neurosci., 10: 86–89

    Article  CAS  Google Scholar 

  47. Prell, G.D. and Green, J.P. 1986. Histamine as a neuroregulator. Ann. Rev. Neurosci., 9: 209–254.

    Article  PubMed  CAS  Google Scholar 

  48. Ribi, W.A. 1978. Gap junctions coupling photoreceptor axons in the first optic ganglion of the fly. Cell Tiss Res., 195: 299–308.

    CAS  Google Scholar 

  49. Marie, R.L. and Carlson, S.D. 1983. The fine structure of neuroglia in the lamina ganglionaris of the housefly, Musca domestica L. J. Neurocytol., 12: 213–241.

    Article  Google Scholar 

  50. Sarantis, M., Everett, K. and Attwell, D. 1988. A presynaptic action of glutamate at the cone output synapse. Nature, 332: 451–453.

    Article  PubMed  CAS  Google Scholar 

  51. Schäfer, S. 1987. PhD Thesis Free University Berlin

    Google Scholar 

  52. Schwartz, J-C., Arrang, J-M., Garbarg, M. and Korner, M. 1986. Properties and roles of the three subclasses of histamine receptors in brain. J. Exp. Biol., 124: 203–224.

    PubMed  CAS  Google Scholar 

  53. Shannon, C.E. and Weaver, W. 1949. The mathematical theory of communication. University of Illinois Press Urbana.

    Google Scholar 

  54. Shaw, S.R. 1968. Organization of the locust retina. Symp. Zool. Soc. Lond., 23: 135–163.

    Google Scholar 

  55. Shaw, S.R. 1975. Retinal resistance barriers and electrical lateral inhibition. Nature, 255: 480–483.

    Article  PubMed  CAS  Google Scholar 

  56. Shaw, S.R. 1981. Anatomy and physiology of the identified non-spiking cells in the photoreceptor-lamina complex ofthe compound eye of insects, especially Diptera, pp.61-116. In: Neurones without impulses. Roberts, A. and Bush, B.M.H. Soc. Exp.Biol. Seminar series 6.

    Google Scholar 

  57. Shaw, S.R. 1984. Early visual processing in insects. J. exp. Biol. 112: 225–251.

    PubMed  CAS  Google Scholar 

  58. Simmons, P.J. 1981. Synaptic transmission between second and third-order neurones of a locust ocellus. J. comp. Physiol 145: 265–276.

    Article  Google Scholar 

  59. Simmons, P.J. 1982. The operation of connexions between photoreceptors and large second-order neurons in dragonfly ocelli. J. comp. Physiol., 149: 389–398.

    Article  Google Scholar 

  60. Simmons, P.J. and Hardie, R.C. 1988. Evidence that histamine is a neurotransmitter in the locust ocellus. J. Exp. Biol., 138: 205–219

    CAS  Google Scholar 

  61. Srinivasan, M.V., Laughlin, S.B. and Dubs, A. 1982. Predictive coding: a fresh view of inhibition in the retina. Proc. Roy. Soc. Lond. B, 216: 427–459.

    Article  CAS  Google Scholar 

  62. Strausfeld, N.J. 1976. Atlas of an insect brain. Springer, Berlin Heidelberg New York.

    Book  Google Scholar 

  63. Strausfeld, N.J. 1984. Functional neuroanatomy of the blowfly’s visual system, pp. 483–522. In: Photoreception and vision in invertebrates. Ali, M.A. ed. Plenum Press, New York London.

    Chapter  Google Scholar 

  64. Strausfeld, N.J. and Nassel, D.R. 1981, Neuroarchitectures serving compound eyes of Crustacea and Insects. In: Handbook of Sensory Physiology, Vol VII/6b, Autrum, H. ed. Springer Berlin Heidelberg New York.

    Google Scholar 

  65. Stuart, A.E. 1983, Vision in barnacles. Trends Neurosci., 6: 137–140.

    Article  Google Scholar 

  66. Stuart, A.E. and Callaway, J.C. 1988, Histamine is synthesized by barnacle ocelli and affects second-order visual cells. Invest. Ophthalm. Vis. Sci., 29:223 (abstr.)

    Google Scholar 

  67. Wang-Bennett, L.T. and Glantz, R.M. 1987, The functional organization of the crayfish lamina ganglionaris. I. Non-spiking monopolar cells, J. Comp. Physiol. A 161: 131–145.

    Article  PubMed  CAS  Google Scholar 

  68. Wilson, M. 1978, Generation of graded potential signals in the second order cells of locust ocellus. J. comp. Physiol., 124: 317–331.

    Article  Google Scholar 

  69. Zettler, F. and Järvilehto, M. 1973. Active and passive axonal propagation of non-spike signals in the retina of Calliphora, J. Comp. Physiol., 85: 89–104.

    Article  Google Scholar 

  70. Zettler, F. and Straka, H. 1987. Synaptic chloride channels generating hyperpolarising responses in monopolar neurones of the blowfly visual system. J. Exp. Biol. 131: 435–438.

    Google Scholar 

  71. Zimmerman, R.P. 1978. Field potential analysis and the physiology of second-order neurons in the visual system of the fly. J. Comp. Physiol. A, 126: 297–317.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1989 Springer Science+Business Media New York

About this chapter

Cite this chapter

Hardie, R., Laughlin, S., Osorio, D. (1989). Early Visual Processing in the Compound Eye: Physiology and Pharmacology of the Retina-Lamina Projection in the Fly. In: Singh, R.N., Strausfeld, N.J. (eds) Neurobiology of Sensory Systems. Springer, Boston, MA. https://doi.org/10.1007/978-1-4899-2519-0_3

Download citation

  • DOI: https://doi.org/10.1007/978-1-4899-2519-0_3

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4899-2521-3

  • Online ISBN: 978-1-4899-2519-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics