Glycoglycerolipids of Animal Tissues

  • Robert K. Murray
  • Rajagopalan Narasimhan
Part of the Handbook of Lipid Research book series (HLRE, volume 6)


This chapter summarizes the principal features of the biochemistry of the glycoglycerolipids (GGroLs) present in animal tissues. The isolation from wheat flour and the elucidation of the structure of galactosyldiacylglycerol (Ga1DAG) and digalactosyldiacylglycerol (Ga12DAG) by Carter and colleagues (1956, 1961a,b, 1965) is one of the landmarks of the history of the biochemistry of glycolipids, as it established the GGroLs as one of the major classes of glycolipids. Subsequently, it was shown relatively quickly that Ga1DAG and Ga12DAG are present in many plants and algae (reviewed by Sastry, 1974; Ishizuka and Yamakawa, 1985; see also Chapter 3, this volume). Of particular relevance to the subject matter of this chapter was the report by Steim and Benson (1963) that Ga1DAG occurs in bovine brain, as this was the first demonstration that GGroLs are constituents of animal tissues. Over the succeeding years, it has become apparent that a minimum of some six galactoglycerolipids are found in animal tissues, principally, although perhaps not exclusively, located in either nervous tissue and/or testis and spermatozoa. These six lipids can be allotted to two subclasses of the galactoglycerolipids: the galactosyldiacylglycerols and the galactosylacylalkylglycerols. It appears that each of these two subclasses contains a monogalactosyl species, a sulfated monogalactosyl species, and a digalactosyl species. Formal and trivial nomenclature for these lipids, the abbreviations for them used in this chapter, and the references reporting their initial discoveries are presented in Table 4-1. Figure 4-1 illustrates the structures of these compounds; it should be noted that structural information available on the two digalactosyl-containing lipids is incomplete.


Animal Tissue Ether Lipid Glyceryl Ether Acetone Fraction Cholesterol Sulfate 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Arita, M., Iwamori, M., Higuchui, T., and Nagai, Y., 1984, Positive and negative fast atom bombardment mass spectrometry of glycosphingolipids. Discrimination of the positional isomers of gangliosides with sialic acids, J. Biochem. (Tokyo) 95: 971.Google Scholar
  2. Bischel, M., and Austin, J., 1963, A modified benzidine method for chromatographic detection of sphingolipids and acid polysaccharides, Biochim. Biophys. Acta 70: 598.PubMedGoogle Scholar
  3. Boggs, J. M., Koshy, K. M., and Rangaraj, G., 1984, Effect of fatty-acid chain-length, fatty-acid hydroxylation and various cations on phase-behavior of synthetic cerebroside sulfate, Chem. Phys. Lipids 36: 65.Google Scholar
  4. Brown, R. E., Stephenson, F. A., Markello, T., Barenholz, Y., and Thompson, T. E., 1985, Properties of a specific glycolipid transfer protein from bovine brain, Chem. Phys. Lipids 38: 79.PubMedGoogle Scholar
  5. Burkart, T., Caimi, L., and Wiesmann, U. N., 1983a, Synthesis and subcellular transport of sulfogalactosyl glycerolipids in the myelinating mouse brain, Biochim. Biophys. Acta 753: 294.PubMedGoogle Scholar
  6. Burkart, T., Caimi, L., Herschkowitz, N. N., and Wiesmann, U. N., 19836, Metabolism of sulfogalactosyl glycerolipids in the myelinating mouse brain, Dev. Biol. 98: 182.Google Scholar
  7. Burkart, T., Caimi, L., Siegrist, H. P., Herschkowitz, N. N., and Wiesmann, U. N., 1982, Vesicular transport of sulfatide in the myelinating mouse brain. Functional association with lysosomes?, J. Biol. Chem. 257, 3151.PubMedGoogle Scholar
  8. Burkart, T., Hofmann, K., Siegrist, H. P., Herschkowitz, N. N., and Wiesmann, U. N., 1981, Quantitative measurement of in vivo sulfatide metabolism during development of the mouse brain: Evidence for a large rapidly degradable sulfatide pool, Dey. Biol. 83: 42.Google Scholar
  9. Carter, H. E., McLuer, R. H., and Slifer, E. D., 1956, Lipids of wheat flour. I. Characterization of galactosyl glycerol components, J. Am. Chem. Soc. 78: 3735.Google Scholar
  10. Carter, H. E., Ohno, K., Nojima, S., Tipton, C. L., and Stanacev, N. Z., 1961a, Wheat flour lipids. 2. Isolation and characterization of glycolipids of wheat flour and other plant sources, J.Lipid Res. 2: 215.Google Scholar
  11. Carter, H. E., Hendry, R. A., and Stanacev, N. Z., 19616, Wheat flour lipids. 3. Structure of mono-and digalactosylglycerol lipids, J. Lipid Res. 2: 223.Google Scholar
  12. Carter, H. E., Johnson, P., and Weber, E. J., 1965, Glycolipids, Annu. Rev. Biochem. 34: 109.PubMedGoogle Scholar
  13. Cho, T. M., Cho, J. S., and Loh, H. H., 1976, Hs-Cerebroside sulfate re-distribution induced by cation, opiate or phosphatidyl serine, Life Sci. 19: 117.PubMedGoogle Scholar
  14. Clermont, Y., and Perey, B., 1957, Quantitative study of the cell population of the seminiferous tubules in immature rats, Am. J. Anat. 100: 241.PubMedGoogle Scholar
  15. Desmukh, D. S., Inoue, T., and Pieringer, R. A., 1971, The association of the galactosyl di-glycerides of brain with myelination. II. The inability of the myelin-deficient mutant, Jimpy mouse, to synthesize galactosyl diglycerides effectively, J. Biol. Chem. 246: 5695.Google Scholar
  16. Eddy, E. M., Muller, C. H., and Lingwood, C. A., 1985, Preparation of monoclonal antibody to sulfatoxygalactosylglycerolipid by in vitro immunization with a glycolipid—glass conjugate, J. Immunol. Methods 81: 137.PubMedGoogle Scholar
  17. Egge, H., 1983a, Ether glycolipids, in Ether Lipids: Biochemical and Biomedical Aspects ( H. K. Mangold, and R. Paltauf, eds.), pp. 141–159, Academic, Orlando, Florida.Google Scholar
  18. Egge, H., 19836, Mass spectrometry of ether lipids, in Ether Lipids: Biochemical and Biomedical Aspects (H. K. Mangold and F. Paltauf, eds.), pp. 17–48, Academic, Orlando, Florida.Google Scholar
  19. Egge, H., Peter-Katalinic, J., Reuter, G., Schauer, R., Ghidoni, R., Sonnino, S., and Tettamanti, G., 1985, Analysis of gangliosides using fast atom bombardment mass-spectrometry, Chem. Phys. Lipids 37: 127.PubMedGoogle Scholar
  20. Farooqui, A. A., 1981, Metabolism of sulfolipids in mammalian tissues, Adv. Lipid Res. 18:159. Fleischer, B., and Zambrano, F., 1973, Localization of cerebroside-sulfotransferase activity in the Golgi apparatus of rat kidney, Biochem. Biophys. Res. Commun. 52: 951.Google Scholar
  21. Fluharty, A. L., Stevens, R. L., Miller, R. T., and Kihara, H., 1974, Sulfoglycerogalactolipid from rat testis: A substrate for pure human arylsulfatase A, Biochem. Biophys. Res. Commun. 61: 348.PubMedGoogle Scholar
  22. Flynn, T. J., Desmukh, G., Subba Rao, G., and Pieringer, R. A., 1975, Sulfogalactosyl diacylglycerol: Occurrence and biosynthesis of a novel lipid in rat brain, Biochem. Biophys. Res. Commun. 65: 122.PubMedGoogle Scholar
  23. Gigg, R. H., 1978, Studies on the synthesis of sulfur-containing glycolipids (“sulfoglycolipids”), in Carbohydrate Sulphates, Vol. 77 (R. G. Schweiger, ed.), American Chemical Society Symposium Series, pp. 44–66, American Chemical Society, Washington, D. C.Google Scholar
  24. Gill, T. J. III, Siew, S., and Kunz, H. W., 1983, Major histocompatibility complex (MHC)-linked genes affecting development, J. Exp. Zool. 228: 325.PubMedGoogle Scholar
  25. Green, J. P., and Robinson, J. D., 1957, Cerebroside sulfate (sulfatide-A) in some organs of the rat and in a mast cell tumor, J. Biol. Chem. 235: 1621.Google Scholar
  26. Hajra, A. K., 1983, Biosynthesis of O-alkylglycerol ether lipids, in Ether Lipids ( H. K. Mangold and F. Paltauf, eds.), pp. 85–106, Academic, Orlando, Florida.Google Scholar
  27. Hakomori, S.-I., 1983a, Chemistry of glycosphingolipids, in Handbook of Lipid Research (D. J. Hanahan, ed.), Vol. 3: Sphingolipid Biochemistry U. N. Kanfer and S.-I. Hakomori, eds.), pp. 1166, Plenum, New York.Google Scholar
  28. Hakomori, S.-I., 19836, Glycosphingolipids in cellular interaction, differentiation and oncogenesis, in Handbook of Lipid Research (D. J. Hanahan, ed.), Vol. 3: Sphingolipid Biochemistry U. N. Kanfer and S.-I. Hakomori, eds.), pp. 327–380, Plenum, New York.Google Scholar
  29. Hakomori, S.-I., and Young, W. W., 1983, Glycolipid antigens and genetic markers, in Handbook of Lipid Research (D. L. Hanahan, ed.), Vol. 3: Sphingolipid Biochemistry ( J. N. Kanfer and S.-I. Hakomori, eds.), pp. 381–436, Plenum, New York.Google Scholar
  30. Handa, S., Yamato, K., Ishizuka, I., Suzuki, A., and Yamakawa, T., 1974, Biosynthesis of seminolipid: Sulfation in vivo and in vitro, J. Biochem. (Tokyo) 75: 77.Google Scholar
  31. Hansson, G. C., Heilbronn, E., Karlsson, K. A., and Samuelsson, B. E., 1979, The lipid composition of the electric organ from the ray, Torpedo marmorata, with special reference to sulfatides and Na+-K+-ATPase, J. Lipid Res. 20: 509.PubMedGoogle Scholar
  32. Hsu, L.-H., Narasimhan, R., Levine, M., Norwich, K. H., and Murray, R. K., 1983, Studies of the biosynthesis and metabolism of rat testicular galactoglycerolipids, Can. J. Biochem. Cell Biol. 61: 1272.Google Scholar
  33. Inoue, T., Desmukh, D. S., and Pieringer, R. A., 1971, The association of the galactosyl di-glycerides of brain with myelination. I. Changes in the concentration of monogalactosyl diglyceride in the microsomal and myelin fractions of brain of rats during development, J. Biol. Chem. 246: 5688.PubMedGoogle Scholar
  34. Ishizuka, I., and Tadano, K., 1982, The sulfoglycolipid, highly acidic amphiphiles of mammalian renal tubules, Adv. Exp. Biol. Med. 152: 195.Google Scholar
  35. Ishizuka, I., and Yamakawa, T., 1974, Absence of seminolipid in seminoma tissue with concomitant increase of sphingoglycolipids, J. Biochem. (Tokyo) 76: 221.Google Scholar
  36. Ishizuka, I., and Yamakawa, T., 1985, Glycoglycerolipids, in New Comprehensive Biochemistry, Vol. 10: Glycolipids (A. Neuberger, and L. L. M., van Deenen, eds.), pp. 101–197, Elsevier, Amsterdam.Google Scholar
  37. Ishizuka, I., Suzuki, M., and Yamakawa, T., 1973, Isolation and characterization of a novel sulfoglycolipid, “seminolipid,” from boar testis and spermatozoa, J. Biochem. (Tokyo) 73: 77.Google Scholar
  38. Ishizuka, I., Inomata, M., Ueno, K., and Yamakawa, T., 1978, Sulfated glyceroglycolipids in rat brain: Structure, sulfation in vitro, and accumulation in whole brain during development, J. Biol. Chem. 253: 898.PubMedGoogle Scholar
  39. Iwamori, M., Moser, H. W., and Kishimoto, Y., 1976, Cholesterol sulfate in rat tissues. Tissue distribution, developmental change and brain subcellular localization, Biochim. Biophys. Acta 441: 268.PubMedGoogle Scholar
  40. Kanfer, J. N., 1983, Glycosphingolipids as receptors, in Handbook of Lipid Research (D. J. Hanahan, ed.), Vol. 3: Sphingolipid Biochemistry U. N. Kanfer and S.-I. Hakomori, eds.), pp. 437–471, Plenum, New York.Google Scholar
  41. Karlsson, K.-A., Samuelsson, B. E., and Steen, G. D., 1974, The lipid composition and Na+K+dependent adenosine triphosphatase activity of the salt (nasal) gland of eider duck and herring gull: A role for sulphatides in sodium-ion tranport, Eur. J. Biochem. 46: 243.PubMedGoogle Scholar
  42. Klugerman, A., and Kornblatt, M. J., 1980, The subcellular localization of testicular sulfogalactoglycerolipid, Can. J. Biochem. 58: 225.PubMedGoogle Scholar
  43. Knapp, A., Kornblatt, M. J., Schachter, H., and Murray, R. K., 1973, Studies on the biosynthesis of testicular sulfoglycerogalactolipid: Demonstration of a Golgi-associated sulfotransferase activity, Biochem. Biophys. Res. Commun. 55: 179.PubMedGoogle Scholar
  44. Kohler, G., and Milstein, C., 1975, Continuous cultures of fused cells secreting antibody of predefined specificity, Nature (Lond.) 256: 495.Google Scholar
  45. Kohler, G., and Milstein, C., 1976, Derivation of specific antibody-producing tissue culture and tumor lines by cell fusion, Eur. J. Immunol. 6: 511.PubMedGoogle Scholar
  46. Kolodny, E. H., and Moser, H. W., 1983, Sulfatide lipidosis, in The Metabolic Basis of Inherited Disease, 5th ed. U. B. Stanbury, J. B. Wyngaarden, D. S. Fredrickson, J. L. Goldstein, and M. S. Brown, eds.), pp. 881–905, McGraw-Hill, New York.Google Scholar
  47. Kornblatt, M. J., 1979, Synthesis and turnover of sulphogalactoglycerolipid, a membrane lipid, during spermatogenesis, Can. J. Biochem. 57: 255.PubMedGoogle Scholar
  48. Kornblatt, M. J., Schachter, H., and Murray, R. K., 1972, Partial characterization of a novel glycerogalactolipid from rat testis, Biochem. Biophys. Res. Commun. 48: 1489.PubMedGoogle Scholar
  49. Kornblatt, M. J., Knapp, A., Levine, M., Schachter, H., and Murray, R. K., 1974, Studies on the structure and formation during spermatogenesis of the sulfoglycerogalactolipid of rat testis, Can. J. Biochem. 52: 689.Google Scholar
  50. Koshy, K. M., and Boggs, J. M., 1983, Partial synthesis and physical properties of cerebroside sulfate containing palmitic acid or alpha-hydroxy palmitic acid, Chem. Phys. Lipids 34: 41.PubMedGoogle Scholar
  51. Letts, P. J., Hunt, R. C., Shirley, M. A., Pinteric, L., and Schachter, H., 1978, Late spermatocytes from immature rat testis. Isolation, electron microscopy, lectin agglutinability and capacity for glycoprotein and sulfogalactoglycerolipid biosynthesis, Biochim. Biophys. Acta 541: 59.Google Scholar
  52. Levine, M., 1981, Studies on Glycolipids of Testis, Spermatozoa and Brain, Ph.D thesis, University of Toronto.Google Scholar
  53. Levine, M., Kornblatt, M. J., and Murray, R. K., 1975, Isolation and partial characterization of a sulfogalactoglycerolipid from rat brain, Can. J. Biochem. 53: 679.PubMedGoogle Scholar
  54. Levine, M., Bain, J., Narasimhan, R., Palmer, B., Yates, A. J., and Murray, R. K., 1976, A comparative study of the glycolipids of human, bird and fish testes and of human sperm, Biochim. Biophys. Acta 441: 134.PubMedGoogle Scholar
  55. Liau, Y. H., Zdebska, E., Slomiany, A., and Slomiany, B. L., 1982, Biosynthesis in vitro of a sulfated triglucosyl monoalkylmonoacylglycerol by rat gastric mucosa, J. Biol. Chem. 257: 1 2019.Google Scholar
  56. Liau, Y. H., Zdebska, E., Aono, M., Slomiany, A., and Slomiany, B. L., 1983, In vitro biosynthesis of sulphatoglycosphingolipids by rat submandibular salivary glands, Arch. Oral Biol. 28: 1001.Google Scholar
  57. Lingwood, C. A., 1979, Action of galactose oxidase on galactolipids, Can. J. Biochem. 57: 1138.PubMedGoogle Scholar
  58. Lingwood, C. A., 1985a, Developmental regulation of galactoglycerolipid sulphation during mammalian spermatogenesis: Evidence for a substrate-selective inhibitor of testicular sulphotransferase activity in the rat, Biochem. J. 231: 393.PubMedGoogle Scholar
  59. Lingwood, C. A., 19856, Timing of sulphogalactolipid biosynthesis in the rat testis studied by tissue autoradiography, J. Cell Sci. 75: 329.Google Scholar
  60. Lingwood, C. A., 1985c, Protein—glycolipid interactions during spermatogenesis. Binding of specific germ cell proteins to sulfatoxygalactosylacylalkylglycerol, the major glycolipid of mammalian male germ cells, Canad. J. Biochem. Cell Biol. 63: 1077.Google Scholar
  61. Lingwood, C., and Schachter, H., 1981, Localization of sulfatoxygalactosylacylalkylglycerol at the surface of rat testicular germinal cells by immunocytochemical techniques: pH dependence of a nonimmunological reaction between immunoglobulin and germinal cells, J. Cell Biol. 89: 621.PubMedGoogle Scholar
  62. Lingwood, C. A., Murray, R. K., and Schachter, H., 1980, The preparation of rabbit antiserum specific for mammalian testicular sulfogalactoglycerolipid, J. Immunol. 124: 769.PubMedGoogle Scholar
  63. Lingwood, C., Hay, G., and Schachter, H., 1981, Tissue distribution of sulfolipids in the rat. Restricted location of sulfatoxygalactosylacylalkylglycerol, Can. J. Biochem. 59: 556.PubMedGoogle Scholar
  64. Lingwood, C., Kunz, H. W., and Gill, T. J. III, 1985, Deficiency in the regulation of testicular galactolipid sulphotransferase in rats carrying the growth-and reproduction-complex (grc) gene, Biochem. J. 231: 401.PubMedGoogle Scholar
  65. Loh, H. H., Law, P. Y., Ostwald, T., Cho, T. M., and Way, E. L., 1978, Possible involvement of cerebroside sulfate in opiate receptor binding, Fed. Proc. Fed. Am. Soc. Exp. Biol. 37: 147.Google Scholar
  66. Magnani, J. F., Smith, D. F., and Ginsburg, V., 1980, Detection of gangliosides that bind cholera toxin: Direct binding of 1251-labelled toxin to thin-layer chromatograms, Anal. Biochem. 109: 399.PubMedGoogle Scholar
  67. McLuer, R. H., and Evans, J. E., 1973, Preparation and analysis of benzoylated cerebrosides, J. Lipid Res. 14: 611.Google Scholar
  68. McLuer, R. H., and Ullman, M. D., 1980, Preparation and analytical high performance liquid chromatography of glycolipids, in Cell Surface Glycolipids, Vol. 128 ( C. C. Sweeley, ed.), pp. 114, Amererican Chemical Society Symposium Series, Washington, D.C.Google Scholar
  69. Metz, R. J., and Radin, N. S., 1980, Glucosylceramide uptake protein from spleen cytosol, J. Biol. Chem. 255: 4463.PubMedGoogle Scholar
  70. Moser, H. W., and Dulaney, J. T., 1978, Sulfatide lipidosis: Metachromatic leukodystrophy, in The Metabolic Basis of Inherited Disease, 4th ed. ( J. B. Stanbury, J. B. Wyngaarden, and D. S. Fredrickson, eds.), pp. 770–809, McGraw-Hill, New York.Google Scholar
  71. Murray, R. K., Levine, M., and Kornblatt, M. J., 1976, Sulfatides: Principal glycolipids of the testes and spermatozoa of chordates, in Glycolipid Methodology ( L. A. Witting, ed.), pp. 305–327, American Oil Chemical Society, Champaign, Illinois.Google Scholar
  72. Murray, R. K., Narasimhan, R., Levine, M., Pinteric, L., Shirley, M., Lingwood, C., and Schachter, H., 1980, Galactoglycerolipids of mammalian testis, spermatozoa and nervous tissue, in Cell Surface Glycolipids, Vol. 128 ( C. C. Sweeley, ed.), pp. 105–125, American Chemical Society Symposium Series, Amer. Chem. Soc. Washington, D.C.Google Scholar
  73. Narasimhan, R., Hsu, L.-H., and Murray, R. K., 1982a, Inability of bovine spermatozoa to synthesize galactolipids, Fed. Proc. Fed. Am. Soc. Exp. Biol. 41: 1170 (abst.).Google Scholar
  74. Narashimhan, R., Bennick, A., Palmer, B., and Murray, R. K., 1982b, Studies on the glycolipids of human saliva and gastric juice, J. Biol. Chem. 257: 15122.Google Scholar
  75. Narasimhan, R., Hsu, L.-H., and Murray, R. K., 1983, An analysis of the relationship between the synthesis of glyceryl ethers and the synthesis of galactoglycerolipid in rat testis, Fed. Proc. Fed. Am. Soc. Exp. Biol. 42: 2020 (abst.).Google Scholar
  76. Neufeld, E. F., and Hall, C. W., 1964, Formation of galactolipids by chloroplasts, Biochem. Biophys. Res. Commun. 14: 503.PubMedGoogle Scholar
  77. Norton, W. T., and Brotz, M., 1963, New galactolipids of brain: A monoalkyl-monoacyl-glyceryl galactoside and cerebroside fatty acid esters, Biochem. Biophys. Res. Commun. 12: 198.PubMedGoogle Scholar
  78. Paltauf, R., 1983, Ether lipids in biological and model membranes, in Ether Lipids: Biochemical and Biomedical Aspects ( H. K. Mangold, and R. Paltauf, eds.), pp. 309–355, Academic, Orlando, Florida.Google Scholar
  79. Pieringer, J., Subba Rao, G., Mandel, P., and Pieringer, R. A., 1977, The association of the sulphogalactosylglycerolipid of rat brain with myelination, Biochem. J. 166: 421.PubMedGoogle Scholar
  80. Radin, N. S., Martin, F. B., and Brown, J. R., 1957, Galactolipide metabolism, J. Biol. Chem. 224: 499.PubMedGoogle Scholar
  81. Reiter, S., Fischer, G., and Jatzkewitz, H., 1976, Degradation of seminolipid by a lipase in secondary lysosomes, FEBS Lett. 68: 250.PubMedGoogle Scholar
  82. Roberts, D. D., Rao, N. C., Magnani, J. L., Spitalnik, S. L., Liotta, L. A., and Ginsburg, V., 1985, Laminin binds specifically to sulfated glycolipids, Proc. Natl. Acad. Sci. USA 82: 1306.PubMedGoogle Scholar
  83. Rouser, G., Kritchevsky, G., Heller, D., and Lieber, E., 1963, Lipid composition of beef brain, beef liver, and sea anemone—two approaches to quantitative fractionation of complex lipid mixtures, J. Am. Oil Chem. Soc. 40: 425 (abst.).Google Scholar
  84. Rouser, G., Kritchevsky, G., Simon, G., and Nelson, G. J., 1967, Quantitative analysis of brain and spinach leaf glycolipids employing silicic acid column chromatography and acetone for elution of glycolipids, Lipids 2: 37.PubMedGoogle Scholar
  85. Rumsby, M. G., and Gray, I. K., 1965, A monogalactolipid component in extracts of sheep brain, J. Neurochem. 12: 1005.PubMedGoogle Scholar
  86. Rumsby, M. G., and Rossiter, R. J., 1968, Alkyl ethers from the glycerogalactolipid fraction of nerve tissue, J. Neurochem. 15: 1473.PubMedGoogle Scholar
  87. Sasaki, T., 1985, Glycolipid-binding proteins, Chem. Phys. Lipids 38: 63.PubMedGoogle Scholar
  88. Sastry, P. S., 1974, Glycosyl glycerides, Adv. Lipid Res. 12: 251.PubMedGoogle Scholar
  89. Selivonchick, D. P., Schmid, P. C., Natarajan, V., and Schmid, H. H. O. 1980, Structure and metabolism of phospholipids in bovine epididymal spermatozoa, Biochim. Biophys. Acta 618: 242.PubMedGoogle Scholar
  90. Shirley, M. A., and Schachter, H., 1980, Enrichment of sulfogalactosylalkylacylglycerol in a plasma membrane fraction from adult rat testis. Can. J. Biochem. 58: 1230.PubMedGoogle Scholar
  91. Singh, H., 1973, Glycolipids of peripheral nerve: Isolation and characterization of glycolipids from rabbit sciatic nerve, J. Lipid Res. 14: 41.PubMedGoogle Scholar
  92. Slomiany, A., and Slomiany, B. L., 1977, Neutral glyceroglucolipids of the human gastric content, Biochem. Biophys. Res. Commun. 76: 115.PubMedGoogle Scholar
  93. Slomiany, B. L., and Slomiany, A., 1980, Glycosphingolipids and glyceroglucolipids of glandular epithelial tissue, in Cell Surface Glycolipids, Vol. 128 ( C. C. Sweeley, ed.), pp. 149–176, American Chemical Society Sympoisum Series, American Chemical Society, Washington, D.C.Google Scholar
  94. Slomiany, B. L., Slomiany, A., and Glass, G. B. J., 1977a, Partial characterization of a novel sulfated glyceroglucolipid of the human gastric content, FEBS Lett. 77: 47.PubMedGoogle Scholar
  95. Slomiany, B. L., Slomiany, A., and Glass, G. B. J., 1977b, Characterization of two major neutral glyceroglucolipids of the human gastric content, Biochemistry 16: 3954.PubMedGoogle Scholar
  96. Slomiany, B. L., Slomiany, A., and Glass, G. B. J., 1977c, Glycolipids of the human gastric content: Structure of the sulfated glyceroglucolipid, Eur. J. Biochem. 78: 33.PubMedGoogle Scholar
  97. Slomiany, B. L., Slomiany, A., and Mandel, I. D., 1980, Lipid composition of human submandibular gland secretion from light and heavy calculus formers, Arch. Oral Biol. 25: 749.PubMedGoogle Scholar
  98. Slomiany, A., Yano, S., Slomiany, B. L., and Glass, G. B. J., 1978, Lipid composition of the gastric mucous barrier in the rat, J. Biol. Chem. 253: 3785.PubMedGoogle Scholar
  99. Slomiany, A., Slomiany, B. L., and Mandel, I. D., 1981, Lipid composition of human parotid saliva from light and heavy dental calculus-formers, Arch. Oral Biol. 26: 151.PubMedGoogle Scholar
  100. Slomiany, B. L., Liau, Y. H., Zdebska, E., Murty, V. L. N., and Slomiany, A., 1983, Enzymatic sulfation of triglucosyl monoalkylmonoacylglycerol in rat salivary glands, Biochem. Biophys. Res. Commun. 113: 817.PubMedGoogle Scholar
  101. Slomiany, B. L., Aono, M., Murty, V. L. N., Slomiany, A., Levine, M. J., and Tabak, L. A., 1982, Lipid composition of submandibular saliva from normal and cystic fibrosis individuals, J. Dent. Res. 61: 1163.PubMedGoogle Scholar
  102. Slomiany, B. L., Kojima, K., Banas-Gruszka, Z., Murty, V. L. N., Galicki, N. I., and Slomiany, A., 1981, Characterization of the sulfated monosialyltriglycosylceramide from bovine gastric mucosa, Eur. J. Biochem. 119: 647.PubMedGoogle Scholar
  103. Snyder, F., Lee, T-c., and Wykle, R. L., 1985, Ether-linked glycerolipids and their bioactive species: Enzymes and metabolic regulation, in The Enzymes of Biological Membranes, Vol. 2, 2nd ed. ( A. N. Martonosi, ed.), pp. 1–58, Plenum, New York.Google Scholar
  104. Steim, J. M., 1967, Monogalactosyl diglyceride, Biochim. Biophys. Acta 144: 119.Google Scholar
  105. Steim, J. M., and Benson, A. A., 1963, Galactosyl diglyceride in brain, Fed. Proc. Fed. Am. Soc. Exp. Biol. 22: 299 (abst.).Google Scholar
  106. Subba Rao, K., Wenger, D. A., and Pieringer, R. A., 1970, The metabolism of glyceride glycolipids. IV. Enzymatic hydrolysis of monogalactosyl and digalactosyl diglyceride in rat brain, J. Biol. Chem. 245: 2520.PubMedGoogle Scholar
  107. Subba, Rao, G., Norcia, L. N., Pieringer, J., and Pieringer, R. A., 1977, The biosynthesis of sulphogalactosyldiacylglycerol of rat brain in vitro, Biochem. J. 166: 429.Google Scholar
  108. Suzuki, A., Ishizuka, I., Ueta, N., and Yamakawa, T., 1973, Isolation and characterization of seminolipid (1-O-alkyl-2-O-acyl-3-[133’-sulfogalactosyl]glycerol) from guinea pig testis and incorporation of 35S-sulfate into seminolipid in sliced testis, Jpn. J. Exp. Med. 43: 435.PubMedGoogle Scholar
  109. Suzuki, A., Sato, M., Handa, S., Muto, Y., and Yamakawa, T., 1977, Decrease of seminolipid content in the testes of rats with vitamin A deficiency determined by high performance liquid chromatography, J. Biochem. (Tokyo) 82: 461.Google Scholar
  110. Suzuki, K., 1965, The pattern of mammalian brain gangliosides. II. Evaluation of the extraction procedures, post-mortem changes and the effect of formalin preservation, J. Neurochem. 12: 629.PubMedGoogle Scholar
  111. Sweeley, C. C., and Nunez, H. A., 1985, Structural analysis of glycoconjugates by mass spectrometry and nuclear magnetic resonance spectroscopy, Annu. Rev. Biochem. 54: 765.Google Scholar
  112. Sweeley, C. C., and Siddiqui, B., 1976, Chemistry of mammalian glycolipids, in The Glycoconjugates, Vol. 1, pp. 459–540. ( M. Horowitz and W. Pigman, eds.), Academic, New York.Google Scholar
  113. Tadano, K., and Ishizuka, I., 1982a, Isolation and characterization of the sulfated gangliotriaosylceramide from rat kidney, J. Biol. Chem. 257: 1482.PubMedGoogle Scholar
  114. Tadano, K., and Ishizuka, I., 1982b, Bis-sulfoglycosphingolipid containing a unique 3–0-sulfated N-acetylgalactosamine from rat kidney, J. Biol. Chem. 257: 9294.PubMedGoogle Scholar
  115. Tadano, K., Ishizuka, I., Matsuo, M., and Matsumoto, S., 1982, Bis-sulfated gangliotetraosylceramide from rat kidney, J. Biol. Chem. 257: 13413.PubMedGoogle Scholar
  116. Teuscher, C., Wild, G. C., and Tung, K. S. K., 1982, Immunochemical analysis of guinea pig sperm autoantigens, Biol. Reprod. 26: 218.PubMedGoogle Scholar
  117. Ueno, K., Ishizuka, I., and Yamakawa, T., 1975, Glycolipids of the fish testis, J. Biochem. (Tokyo) 77: 1223.Google Scholar
  118. Ueno, K., Ishizuka, I., and Yamakawa, T., 1977, Glycolipid composition of human testis at different ages and the stereochemical configuration of seminolipid, Biochim. Biophys. Acta 487: 61.PubMedGoogle Scholar
  119. Ullman, M. D., and McLuer, R. H., 1977, Quantitative analysis of plasma neutral glycosphingolipids by high performance liquid chromatography of their perbenzoyl derivatives, J. Lipid Res. 18: 371.PubMedGoogle Scholar
  120. Vance, D. E., and Sweeley, C. C., 1967, Quantitative determination of the neutral glycosyl ceramides in human blood, J. Lipid Res. 8: 621.PubMedGoogle Scholar
  121. Wells, M. A., and Dittmer, J. C., 1967, A comprehensive study of the postnatal changes in the concentration of the lipids of developing rat brain, Biochemistry 6: 3169.PubMedGoogle Scholar
  122. Wenger, D. A., Petitpas, J. W., and Pieringer, R. A., 1968, The metabolism of glyceride glycolipids. II. Biosynthesis of monogalactosyl diglyceride from uridine diphosphate galactose and di-glyceride in brain, Biochemistry 7: 3700.PubMedGoogle Scholar
  123. Wenger, D. A., Subba Rao, K., and Pieringer, R. A., 1970, The metabolism of glyceride glycolipids. III. Biosynthesis of digalactosyl diglyceride by galactosyl transferase pathways in brain, J. Biol. Chem. 245: 2513.PubMedGoogle Scholar
  124. Williams, J. P., Watson, G. R., Khan, M., Leung, S., Kuksis, A., Stachnyk, O., and Myher, J. J., 1975, Gas—liquid chromatography of plant galactolipids and their deacylation and methanolysis products, Anal. Biochem. 66: 110.PubMedGoogle Scholar
  125. Wong, M., Brown, R. E., Barenholz, Y., and Thompson, T. E., 1984, Glycolipid transfer protein from bovine brain, Biochemistry 23: 6498.PubMedGoogle Scholar
  126. Yahara, S., and Kishimoto, Y., 1981, Characterization of alkylgalactolipids from calf brain by high performance liquid chromatography, J. Neurochem. 36: 190.PubMedGoogle Scholar
  127. Yamaguchi, S., Aoki, K., Handa, S., and Yamakawa, T., 1975, Deficiency of seminolipid sulfatase activity in brain tissue of metachromatic leukodystrophy, J. Neurochem. 24: 1087.PubMedGoogle Scholar
  128. Yamato, K., Handa, S., and Yamakawa, T., 1974, Purification of arylsulfatase A from boar testis and its activities toward seminolipid and sulfatide, J. Biochem. (Tokyo) 75: 1241.Google Scholar
  129. Zdebska, E., Liau, Y. H., Slomiany, A., and Slomiany, B. L., 1983, Enzymatic sulfation of glycosphingolipids in rat parotid salivary glands, J. Dent. Res. 62: 1026.PubMedGoogle Scholar
  130. Zilversmit, D. B., Entenman, C., and Fishier, M. C., 1943a, On the calculation of “turnover time” and “turnover rate” from experiments involving the use of labeling agents, J. Gen. Physiol. 26: 325.PubMedGoogle Scholar
  131. Zilversmit, D. B., Entenman, C., Fishier, M. C., and Chaikoff, I. L., 19436, The turnover rate of phospholipids in the plasma of the dog as measured with radioactive phosphorus, J. Gen. Physiol. 26: 333.Google Scholar

Copyright information

© Springer Science+Business Media New York 1990

Authors and Affiliations

  • Robert K. Murray
    • 1
  • Rajagopalan Narasimhan
    • 1
  1. 1.Departments of Biochemistry and PathologyUniversity of TorontoTorontoCanada

Personalised recommendations