Selective Oxidation Chemistry on Soluble Oxides: A Progress Report

  • V. W. Day
  • W. G. Klemperer
  • S. P. Lockledge
  • D. J. Main
  • F. S. Rosenberg
  • R.-C. Wang
  • O. M. Yaghi
Part of the Industry-University Cooperative Chemistry Program Symposia book series (IUCC)


The phrase “selective oxidation” invokes the world of industrial chemistry concerned with the partial oxidation of organic molecules. There are two grounds for this. The first is economic, since almost half of the major products of the usage of heterogeneous catalysis (see Table I) are produced by selective oxidation of organic materials. The second ground for associating selective oxidation chemistry with the industrial community arises from the difficulty that academic chemists have encountered when attempting to understand heterogeneous selective oxidation processes on a molecular level and simulate them with homogeneous analogues. The detailed mechanisms of methanol dehydrogenation and ethylene epoxidation are unclear, and even the vaguest outlines of the C-H activation mechanism involved in xylene and butane oxidations are obscure.


Selective Oxidation Methanol Oxidation Maleic Anhydride Oxidative Dehydrogenation Vanadium Oxide 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    W. E. Farneth, F. Ohuchi, R. H. Staley, U. Chowdhry, and A. W. Sleight, J. Phys. Chem. 89, 2493 (1985).CrossRefGoogle Scholar
  2. 2.
    W. E. Farneth, R. H. Staley, and A. W. Sleight, J. Am. Chem. Soc. 108, 2327 (1986).CrossRefGoogle Scholar
  3. 3.
    J. Edwards, J. Nicolaidis, M. B. Cutlip, and C. O. Bennett, J. Catal. 50, 24 (1977).CrossRefGoogle Scholar
  4. 4.
    J. N. Allison and W. A. Goddard III, J. Catal. 92, 127 (1985).CrossRefGoogle Scholar
  5. 5.
    W. A. Goddard III, Science 227, 917 (1985).CrossRefGoogle Scholar
  6. 6.
    V. W. Day, W. G. Klemperer, C. Schwartz, and R.-C. Wang, in NATO Advanced Science Institute Series, Series C; Mathematical and Physical Sciences, Vol. 231: Surface Organometallic Chemistry: Molecular Approaches to Surface Catalysis; J. M. Basset, B. C. Gates, J. P. Candy, A. Chaplin, M. Leconte, F. Quignard, and C. Santini, eds.; Kluwer: Dordecht, 1988; p. 173.Google Scholar
  7. 7.
    V. W. Day, W. G. Klemperer, F. S. Rosenberg, and R.-C. Wang, manuscript in preparation.Google Scholar
  8. 8a.
    R. A. Van Santen and H. P. C. E. Kuipers, Adv. Catal. 35, 265 (1987);CrossRefGoogle Scholar
  9. 8b.
    J. T. Roberts and R. J. Madix, J. Am. Chem. Soc. 110, 8540 (1988).CrossRefGoogle Scholar
  10. 9a.
    J. T. Groves and R. Quinn, J. Am. Chem. Soc. 107, 5790 (1985);CrossRefGoogle Scholar
  11. 9b.
    C. L. Bailey and R. S. Drago, J. Chem. Soc., Chem. Comm. 179 (1987);Google Scholar
  12. 9c.
    M. M. T. Khan and A. P. Rao, J. Mol. Cat. 39, 331 (1987);CrossRefGoogle Scholar
  13. 9d.
    R. A. Leising and K. J. Takeuchi, Inorg. Chem. 26, 4391 (1987);CrossRefGoogle Scholar
  14. 9e.
    J.-C. Marchon and R. Ramasseul, J. Chem. Soc., Chem. Comm. 298 (1988).Google Scholar
  15. 10.
    V. W. Day, W. G. Klemperer, S. P. Lockledge, and D. J. Main, manuscript in preparation.Google Scholar
  16. 11.
    M. S. Wainwright and N. R. Foster, Catal. Rev.-Sci. Eng. 19, 211 (1979).CrossRefGoogle Scholar
  17. 12.
    R. Y. Saleh and I. W. Wachs, Appl. Catal. 31, 87 (1987).CrossRefGoogle Scholar
  18. 13.
    G. Centi, F. Triffirb, J. R. Ebner, and V. M. Franchetti, Chem. Rev. 88, 55 (1988).CrossRefGoogle Scholar
  19. 14.
    M. A. Pepera, J. L. Callahan, M. J. Desmond, E. C. Milberger, P. R. Blum, and N. J. Bremer, J. Am. Chem. Soc. 107, 4883 (1985).CrossRefGoogle Scholar
  20. 15a.
    For representative examples, see (a) 8-(V0)2P207: Yu. E. Gorbunova and S. A. Linde, Sov. Phys. Dokl. (Engl. Transl.) 24, 139 (1979);Google Scholar
  21. 15b.
    α-VPO5: B. Jordan and C. Calvo, Can. J. Chem. 51, 2621 (1973);Google Scholar
  22. 15c.
    β-VPO5: R. Gopal and C. Calvo, J. Solid State Chem. 5, 432 (1972);Google Scholar
  23. 15d.
    V2O5: R. Enjalbert and J. Galy, Acta Crystallogr. Sec. C C42, 1467 (1986);Google Scholar
  24. 15e.
    K12V18O42.·16H2O: G. K. Johnson and E. O. Schlemper, J. Am. Chem. Soc. 100, 3645 (1978);Google Scholar
  25. 15f.
    [NMe4]6[V15O36]·Cl·4H2O: A. Müller, E. Krickemeyer, M. Penk, H.-J. Walberg, and H. Bögge, Angew Chem., Int. Ed. Engl. 26, 1045 (1987);Google Scholar
  26. 15g.
    K6[As6V15O42(H2O)·8H2O: A. Muller and J. Döring, Angew. Chem., Int. Ed. Engl. 27, 1721 (1988).Google Scholar
  27. 16.
    V. W. Day, W. G. Klemperer, and O. M. Yaghi, submitted for publication.Google Scholar

Copyright information

© Springer Science+Business Media New York 1990

Authors and Affiliations

  • V. W. Day
    • 1
    • 2
  • W. G. Klemperer
    • 3
  • S. P. Lockledge
    • 3
  • D. J. Main
    • 3
  • F. S. Rosenberg
    • 3
  • R.-C. Wang
    • 3
  • O. M. Yaghi
    • 3
  1. 1.Crystalytics CompanyLincolnUSA
  2. 2.Department of ChemistryUniversity of NebraskaLincolnUSA
  3. 3.Department of ChemistryUniversity of IllinoisUrbanaUSA

Personalised recommendations