Optical Properties of Normal Human Intracranial Tissues in the Spectral Range of 400 to 2500 NM

  • H. R. Eggert
  • V. Blazek
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 333)


Optical properties describe the physical interactions between electromagnetic radiation and matter dependent on the wavelength of the radiation. Incident power may be reflected, absorbed, scattered and/or transmitted. Reflection may consist of specular reflection and back scattering from inside the matter. The total amount of absorption and internal scattering may be expressed as extinction. According to the law of energy conservation, reflection, extinction and transmission add up to 1. For that reason, measuring optical properties of tissues must include at least two of these parameters or one of them must be excluded by the experimental design. Using a semi-infinite thickness of specimens, the influence of transmitted power may be neglected. According to the Kubelka-Munk-theory (Kubelka and Munk 1931, Kubelka 1948), the ratio of absorption and scattering can be calculated from reflection measurements assuming an ideally black background and a semi-infinite slice thickness (Blazek 1979). In reflection as well as in transmission measurements it has to be considered that the intensity of reflected and transmitted power depends on the solid angle of reflection or transmission (Hardy et al. 1956, Longini et al. 1968). This problem may be solved by using a two-beam spectral photometer with an integrating sphere as measuring instrument (Blazek 1975).


White Matter Gray Matter Basilar Artery Frontal White Matter Extracranial Internal Carotid Artery 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Bayly J.G., Kartha U.B., Stevens W.H. (1963) The absorption spectra of liquid phase H2O, HDO and D2O from 0.7 μm to 10 μm. Infrared Physics 3: 211–223.CrossRefGoogle Scholar
  2. Blazek V. (1975) Reflexions-, Transmissions-und Absorptionsverhalten von biologischem Gewebe für elektromagnetische Strahlung im sichtbaren und nahen IR-Bereich. Biomed Technik 20: 299–300.Google Scholar
  3. Blazek V. (1979) Absorption and scattering properties of biological tissue in relation to monochromatic optical radiation. Biomed Technik 24: 331–332.CrossRefGoogle Scholar
  4. Boggan J.E., Bolger G, Edwards M.S.B. (1985) Effect of hematoporphyrin derivative photoradiation therapy on survival in the rat 9L gliosarcoma brain-tumor model. J Neurosurg 63: 917–921.PubMedCrossRefGoogle Scholar
  5. Cheng M.K., McKean J., Boisvert D., Tulip J. (1986) Photoradiation therapy: Current status and application in the treatment of brain tumors. Surg Neurol 25: 423–435.PubMedCrossRefGoogle Scholar
  6. De Tommasi A., Occhiogrossi M., Vailati G., Baidarre L., Cingolani A. (1986) Evaluation of the Ar+ laser thermal effect in rabbit brain tissue by means of optical absorption coefficients: photoacoustic measurements. Acta Neurochir(Wien) 79: 139–144.CrossRefGoogle Scholar
  7. Doiron D.R., Svaasand L.O., Profio A.E. (1982) Light dosimetry in tissue: Application to photoradiation therapy, in: “Porphyrin Photosensitization,” D. Kessel, T.J. Dougherty, eds., Plenum Press, New York.Google Scholar
  8. Eggert H.R., Blazek V. (1987) Optical properties of human brain tissue, meninges, and brain tumors in the spectral range of 200 to 900 nm. Neurosurgery 21: 459–464.PubMedCrossRefGoogle Scholar
  9. Eichler J., Knof J., Lenz H., Salk J., Schäfer G. (1978) Temperature distribution in tissue during laser irradiation. Radiat Environ Biophys 15: 277–287.PubMedCrossRefGoogle Scholar
  10. Hardy J.D., Hammel H.T. Murgatroyd D. (1956) Spectral transmittance and reflectance of excised human skin. J Appl Physiol 9: 257–264.PubMedGoogle Scholar
  11. Kubelka P., Munk F. (1931) Ein Beitrag zur Optik der Farbanstriche. Z Techn Phys 12: 593–601.Google Scholar
  12. Kubelka P. (1948) New contributions to the optics of intensely light scattering materials: Part I. J Opt Soc Am 38: 448–457.PubMedCrossRefGoogle Scholar
  13. Longini R.L., Zdrojkowski R. (1968) A note on the theory of backscattering of light by living tissue. IEEE Trans Biomed Eng, BME-15: 4–10.CrossRefGoogle Scholar
  14. Parrish J.A. (1982) Photobiologic considerations in photoradiation therapy, in: “Porphyrins and Photosensitization,” D. Kessel, T.J. Dougherty, eds., Plenum Press, New York.Google Scholar
  15. Svaasand L.O., Ellingsen R. (1983) Optical properties of human brain. Photochem Photobiol 38: 293–299.PubMedCrossRefGoogle Scholar
  16. Svaasand L.O., Ellingsen R. (1985) Optical penetration in human intracranial tumors. Photochem Photobiol 41: 73–76.PubMedCrossRefGoogle Scholar
  17. Welch A.J., Wissler E.H., Priebe L.A. (1980) Significance of blood flow in calculation of temperature in laser irradiated tissue. IEEE Trans Biomed Eng 27: 164–166.PubMedCrossRefGoogle Scholar
  18. Wilson B.C., Muller P.J., Yanch J.C. (1986) Instrumentation and light dosimetry for intraoperative photodynamic therapy (PDT) of malignant brain tumours. Phys Med Biol 31: 125–133.PubMedCrossRefGoogle Scholar
  19. van Gemert M., Verdaasdonk R., Strassen E.G., Schets G.A.C.M., Gijsbers G.H.M., Bonnier J.J. (1985) Optical properties of human blood vessel wall and plaque. Lasers Surg Med 5: 235–237.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1993

Authors and Affiliations

  • H. R. Eggert
    • 1
  • V. Blazek
    • 2
  1. 1.Department of NeurosurgeryKassel Community HospitalKasselGermany
  2. 2.Institute for High Frequency TechniqueAachen University of TechnologyAachenGermany

Personalised recommendations