Skip to main content

Towards Imaging of Cerebral Blood Flow and Metabolism on a Microscopical Scale in Vivo

  • Chapter
Book cover Optical Imaging of Brain Function and Metabolism

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 333))

Abstract

Brain cell function and cerebral blood flow are tightly coupled (Schmidt and Hendrix 1938, Olesen 1971, Leniger-Follert and Hossmann 1979, Sokoloff 1981, Frostig et al. 1990). However, the mechanisms how brain cells and cerebral blood vessels do interact in order to adapt cerebral blood flow to different functional and metabolic needs are unknown, although a variety of potential ways of interactions have been proposed (Lassen 1959, Kuschinsky et al. 1972, Rubio et al. 1975, Lou et al. 1987, Heistad and Kontos, 1983, Iadecola et al. 1991, Dirnagl et al. 1993a). One important reason for this situation is the lack of a suitable technique to study this interaction. An ideal method should assess both aspects, i.e. the functional and/or metabolic state of brain cells on the one hand, and cerebral blood flow on the other hand simultaneously. The spatial resolution of such a method should be at least on the order of the objects of investigation, i.e. brain cells and microvessels, and in order to study the dymamics of the interaction and to avoid artifacts induced by an ex vivo approach, the method preferably should be performed in vivo.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literature

  • Brakenhoff GJ, van der Voort HTM, van Spronsen EA, Nanninga N (1989) Three-dimensional imaging in fluorescence by confocal scanning microscopy. J Microscopy 153: 151–159(1989).

    Article  CAS  Google Scholar 

  • Carlsson K (1990) Scanning and detection techniques used in a confocal scanning laser microscopy. J Microscopy 157: 21–27.

    Article  Google Scholar 

  • Chance B, Villringer A, Dirnagl U, Einhäupl KM (1992) Optical Imaging of Brain Function and Metabolism. J Neurol 239: 359–360.

    PubMed  CAS  Google Scholar 

  • Cohan CS, Connor JA, Kater SB (1987) Electrically and chemically mediated increases in intracellular calcium in neuronal groth cones. J Neurosci 7: 3588–3599.

    PubMed  CAS  Google Scholar 

  • Connor JA (1986) Digital imaging of free calcium changes and of spatial gradients in growing processes in single mammalian centra nervous system cell. Proc Natl Acad Sci 83: 6179–6183.

    Article  PubMed  CAS  Google Scholar 

  • Connor JA, Wadman WJ, Hockberger PE, Wong RKS (1988) Sustained dendritic gradients of Ca2+ induced by excitatory amino acids in CA1 hippocampal neurons. Science 248: 649–653(1988).

    Article  Google Scholar 

  • Corbett RJT, Laptook AR, Olivares E (1991) Simultaneous measurement of cerebral blood flow and energy metabolites in piglets using deuterium and phosphorus nucrleas magnetic resonance. J Cereb Blood Flow Metabol 11: 55–65.

    Article  CAS  Google Scholar 

  • Cornell-Bell AH, Finkbeiner SM, Cooper MS, Smith SJ (1990) Glutamate induces calcium waves in cultured astrocytes: long-range glial signaling. Science 247: 470–473.

    Article  PubMed  CAS  Google Scholar 

  • Dani JW, Chernjavsky A, Buchanan J, Smith SJ (1991) Neuronal activity elicits astrocyte Ca2+ waves and oscillations within hippocampal slices. Soc Neur Abstr 17: 57.

    Google Scholar 

  • Dirnagl U, Villringer A, Gebhard R, Haberl RL, Schmiedek, P, Einhäupl KM (1991a) Three-dimensional reconstruction of the rat brain cortical microcirculation in vivo. J Cereb Blood Flow Metab 11: 353–360.

    Article  PubMed  CAS  Google Scholar 

  • Dirnagl U, Villringer A, Einhäupl KM (1991b) Imaging of intracellular pH in normal and ischemic rat brain neocortex using confocal laser scanning microscopy. J Cereb Blood Flow Metabol 11, Suppl 2: S206.

    Google Scholar 

  • Dirnagl U, Villringer A, Einhäupl KM (1992) In-vivo confocal scanning laser microscopy of the cerebral microcirculation. J Microscopy 165: 147–157.

    Article  CAS  Google Scholar 

  • Dirnagl U, Villringer A, Haberl Rl, Einhäupl KM (1990) In vivo confocal Laser scanning microscopy (CLSM): laser light induced alterations of erythrocyte flow in rat brain capillaries sensitized with intravascular fluorescein. Transactions of the Royal Microscopical Society, New Series Volume 1: 337–340.

    Google Scholar 

  • Dirnagl U, Kaplan B, Jacewicz M, Pulsinelli W (1989) Continuous measurement of cerebral cortical blood flow by laser-Doppler flowmetry in a rat stroke model. J Cereb Blood Flow Metab 9: 589–596.

    Article  PubMed  CAS  Google Scholar 

  • Dirnagl U, Lindauer U, Villringer A (1993a) Role of Nitric oxide in the coupling of cerebral blood flow to neuronal activation. Neurosci Let 149: 43–46.

    Article  CAS  Google Scholar 

  • Dirnagl, U., Thoren, P., Villringer, A., Sixt, G., Them, A., and Einhäupl, K.M. (1993b). Global forebrain ischemia in the rat: controlled reduction of cerebral blood flow by hypobaric hypotension and two vessel occlusion. Neurol Res (in press).

    Google Scholar 

  • Fine A, Amos WB, Durbin RM, McNaughton PA (1988) Confocal microscopy: applications in neurobiology. Trends Neurosci 8: 346–351.

    Article  Google Scholar 

  • Frahm J, Bruhn H, Hänicke W, Merboldt KD, Mursch K, Markakis E (1991) Localized proton NMR spectroscopy of brain tumors, using short-echo time STEAM sequences. J Comput Assist Tomogr 15: 991–922.

    Article  Google Scholar 

  • Frahm J (1992) Nuclear magnetic resonance studies of human brain in vivo: anatomy, function, and metabolism. Adv Exp Med Biol (this issue).

    Google Scholar 

  • Frostig RD, Lieke EE, Ts’o DY, Grinvald A (1990) Cortical functional architecture and local coupling between neuronal activity and the microcirculation revealed by in vivo high-resolution optical imagin of intrinsic signals. Proc Natl Acad Sci USA 87: 6082–6086.

    Article  PubMed  CAS  Google Scholar 

  • Glaum SR, Holzwarth JA, Miller RJ (1990) Glutamate receptors activate Ca2+ mobilization and Ca2+ influx intor astrocytes. Proc Natl Acad Sci 87: 3454–3458.

    Article  PubMed  CAS  Google Scholar 

  • Haberl Rl, Heizer ML, and Ellis EF (1987) Effect of Thromboxane A2 mimetic U 46619 on pial arterioles of rabbits and rats. Stroke 18: 796–800.

    Article  PubMed  CAS  Google Scholar 

  • Haberl RL, Heizer M, Ellis EF (1989) Laser-Doppler assessment of brain microcirculation: effect of local alterations. Am J Physiol 25: H1255–H1260.

    Google Scholar 

  • Heistad DD, Kontos HA (1983) in: Handbook of Physiology, J.T. Shepherd and F.M. Abboud, Eds. (The William & Wilkins Company, Baltimore), vol. III, pp. 137–182.

    Google Scholar 

  • Hernandez-Cruz A, Sala F, Adams PR (1990) Subcellular calcium transients visualized by confocal microscopy in a voltage clamped vertebrate neuron. Science 247: 858–862(1990).

    Article  PubMed  CAS  Google Scholar 

  • Holliday J, Spitzer NC (1990) Spontaneous calcium influx and its roles in differentiation of spinal neurones in culture. Dev Biol 141: 13–23.

    Article  PubMed  CAS  Google Scholar 

  • Iadecola C (1991) Intrinsic and extrinsic neural regulation of the cerebral circulation. in: Schmiedek P, Einhäupl K, Kirsch CM (editors), Stimulated cerebral blood flow, experimental findings and clinical significance, Springer Verlag Berlin, Heidelberg, New-York, pp 19–36.

    Google Scholar 

  • Inoue S (1990) Foundations of confocal scanned imaging in light microscopy, in: Handbook of Biological confocal microscopy. Ed: Pawley JB. Plenum Publishing Corp. New York, pp 1–14.

    Chapter  Google Scholar 

  • Jensen AM, Chiu SY (1991) Differential intracellular calcium responses to glutamat in type 1 and type 2 cultured brain astrocytes. J Neurosci 11: 1674–1684.

    PubMed  CAS  Google Scholar 

  • Kuschinsky W, Wahl M, Bosse O, Thurau K (1972) Pervascular potassium and pH as determinants of local pial arterial diameter in cats. A microapplication study. Circ Res 31: 240–247.

    Article  CAS  Google Scholar 

  • Knudsen GM (1993) Blood brain barrier transport measurements using PET-scanning and intavenous double indicator technique. Adv Exp Med Biol (this volume).

    Google Scholar 

  • Kudo Y, Takeda K, Yamazaki K (1990) Quin 2 protects against neuronal cell death due to Ca-overload. Brain Res 528: 48–54.

    Article  PubMed  CAS  Google Scholar 

  • Lassen NA (1959) Cerebral blood flow and oxygen consumption in man. Physiol Rev 39: 183–238.

    PubMed  CAS  Google Scholar 

  • Leniger-Follert E, Hossmann KA (1979) Simultaneous measurement of microflow and evoked potentials in the somato-motor-cortex of the cat during specific sneory activation. Pflügers Arch 380: 85–89.

    Article  PubMed  CAS  Google Scholar 

  • Lou HC, Edvinsson L, MacKenzie (1987) The concept of coupling blood flow to brain function: revision required? Ann Neurol 22: 289–297.

    Article  PubMed  CAS  Google Scholar 

  • MacDermott AB, Mayer ML, Westbrook GL, Smith SJ, Barker JL (1986) NMDA-receptor activation increases cytoplasmic calcium concentration in cultured spinal cord neurones. Nature 321: 519–522.

    Article  PubMed  CAS  Google Scholar 

  • McNaughton LA, Lagnado L, Hunter SP, McNaughton PA (1990a) Use of the confocal microscope to measure changes in free intracellular Calcium in type 1 astrocytes cultured from rat cerebral cortex. J Physiol 424, 5P.

    Google Scholar 

  • McNaughton LA, Lagnado L, Socolovsky M, Hunt SP, McNaughton PA (1990b) Glutamate elevates free intracellular Calcium in type 1 astrocytes from rat cerebral cortex. J Physiol 424: 48P.

    Google Scholar 

  • Michaels RL, Rothman SM (1990) Glutamate neurotoxicity in vitro: Antagonsit pharmacology and intracellular ion concentrations. J Neurosci 10: 283–292.

    PubMed  CAS  Google Scholar 

  • Minsky M. (1957) US Patent No. 3013467.

    Google Scholar 

  • Mies G, Bodsch W, Paschen W, Hossmann K-A (1986) Triple-tracer autoradiography of cerebral blood flow, glucose utilization, and protein synthesis in rat brain. J Cereb Blood Flow Metab 6: 59–60.

    Article  PubMed  CAS  Google Scholar 

  • Mies G (1993) Autoradiographic and biochemical imaging in cerebral ischemia. Adv Exp Med Biol, this issue.

    Google Scholar 

  • Morii S, Ngai AC, Winn R (1986) Reactivity of rat pial arterioles and venules to adenosine and carbon dioxide: With detailed description of the closed cranial window technique in rat. J Cereb Blood Flow Metab 6: 34–41.

    Article  PubMed  CAS  Google Scholar 

  • Nedergaard M, Desai S, Pulsinelli W (1990) Dicarboxy-dichlorofluorscein: a new fluorescent probe for measuring acidic intracellular pH. Anal Biochemistry 187: 109–114.

    Article  CAS  Google Scholar 

  • Olesen J (1971) Contralateral focal increase of cerebral blood flow in man during arm work. Brain 94: 635–646.

    Article  PubMed  CAS  Google Scholar 

  • Phelps ME, Mazziotta JC (1985) Positron Emission Tomography: Human Brain Function and Biochemistry. Science 228: 799–899.

    Article  PubMed  CAS  Google Scholar 

  • Przywara DA, Bhave SV, Bhave A, Wakade TD, Wakade AR (1991) Stimulated rise in neuronal calcium is faster and greater in the nucleus than in the cytosol. FASEB J 5: 217–222.

    PubMed  CAS  Google Scholar 

  • Revest PA, Abbott NJ, Gillespie JI (1991) Receptor-mediated changes in intracellular Calcium-concentration in cultured rat brain capillary endothelial cells. Brain Res 549: 159–161.

    Article  PubMed  CAS  Google Scholar 

  • Rubio R, Berne RM, Bockmann EL, Curnisk RR (1975) Relationship between adenosine concentration and oxygen supply in rat brain. Am J Physiol 228: 1896–1902.

    PubMed  CAS  Google Scholar 

  • Schmidt C, Hendrix J (1938) Action of chemical substances on cerebral blood vessels. Res Publ Assoc Res Nerv Ment Dis 18: 229–276.

    Google Scholar 

  • Sokoloff L (1981) Relationship among local functional activity, energy metabolism, and blood flow in the central nervous system. Federation Proc 40.

    Google Scholar 

  • Them A (1993) Intracellular ion concentrations in the brain: approaches towards in situ confocal imaging. Adv Exp Med Biol (this issue).

    Google Scholar 

  • Tsien RY (1981) A non-disruptive technique for loading calicum buffers and indicators into cells. Nature 290: 527–528.

    Article  PubMed  CAS  Google Scholar 

  • Tsien RY (1989) Fluorescent indicators of ion concentrations. Methods in Cell Biology 30: 127–156.

    Article  PubMed  CAS  Google Scholar 

  • Uematsu D, Greenberg JH, Reivich M, Karp A (1988) In vivo measurement of cytosolic free calcium during cerebral ischemia and reperfusion. Ann Neurol 24: 420–428.

    Article  PubMed  CAS  Google Scholar 

  • Villringer A, Haberl RL, Dirnagl U, Anneser F, Verst M, Einhäupl KM (1989) Confocal Laser Microscopy to study microcirculation on the rat brain surface in vivo. Brain Research 504: 159–60.

    Article  PubMed  CAS  Google Scholar 

  • Villringer A, Dirnagl U, Gebhardt R, Haberl RL, Einhäupl KM (1990a) Non-invasive optical sectioning of structures in the living rat brain. Transactions of the Royal Microscopical Society, New Series Volume 1: 353–356.

    Google Scholar 

  • Villringer, A., Dirnagl, U., Haberl, R.L., Schürer, L., Büttner, U., and Einhäupl, K.M. (1990b). Visualization of erythrocytes; leukocytes; and blood plasma in the rat brain microcirculation in vivo using confocal laser scanning microscopy. Soc Neurosci Abstr 16, Part 1, 24.

    Google Scholar 

  • Villringer A, Dirnagl U, Them A, Schürer L, Krombach F, Einhäupl KM (1991) Imaging of Leukocytes in the rat brain cortex in vivo. Microvasc Res 42: 305–315.

    Article  PubMed  CAS  Google Scholar 

  • Villringer A, Dirnagl U, Piepgras A, Schmiedek P, Einhäupl KM (1992a) Erythrocyte flow in cerebral capillaries under resting and stimulated conditions, in: Schmiedek P, Piepgras A, Einhäupl KM (eds): Cerebral Blood Flow under Stimulated Conditions, Springer Verlag, Berlin, Heidelberg, New-York, pp. 61–65.

    Chapter  Google Scholar 

  • Villringer A, Dirnagl U, Einhäupl KM (1992b) Microscopical visualisation of the brain in vivo, in: Kriete (ed): Visualisation in biomedical microscopies, VCH, Weinheim, 161–181.

    Google Scholar 

  • Wilson T (1989) Trends in confocal microscopy. Trends in Neurosci 12: 486–493.

    Article  CAS  Google Scholar 

  • Wilson T, Carlini AR (1987) Three-dimensional imaging in confocal imaging systems with finite sized detectors. J Microscopy 149: 51–66.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1993 Springer Science+Business Media New York

About this chapter

Cite this chapter

Villringer, A., Dirnagl, U. (1993). Towards Imaging of Cerebral Blood Flow and Metabolism on a Microscopical Scale in Vivo. In: Dirnagl, U., Villringer, A., Einhäupl, K.M. (eds) Optical Imaging of Brain Function and Metabolism. Advances in Experimental Medicine and Biology, vol 333. Springer, Boston, MA. https://doi.org/10.1007/978-1-4899-2468-1_17

Download citation

  • DOI: https://doi.org/10.1007/978-1-4899-2468-1_17

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4899-2470-4

  • Online ISBN: 978-1-4899-2468-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics