Advertisement

Genetic Influences on Sexual Behavior Differentiation

  • Kathie L. Olsen
Part of the Handbooks of Behavioral Neurobiology book series (HBNE, volume 11)

Abstract

The importance of perinatal hormonal stimulation for sexual behavior differentiation is well established in mammals. Hormones secreted by the testes during a critical developmental period have masculinizing and defeminizing effects on sexual behaviors. Moreover, these differentiating actions of testicular hormones on behavior are independent of genetic sex. Females exposed perinatally to testosterone will show more male mating responses and fewer female mating responses in adulthood. Similarly, males deprived of perinatal testicular stimulation display limited male mating behavior but high levels of female mating behavior following the appropriate hormone treatment in adulthood. Although these data demonstrate that the development of sexual behaviors can be independent of genetic sex, the genotype does play an important role in normal sexual differentiation.

Keywords

Androgen Receptor Inbred Strain Sexual Differentiation Recombinant Inbred Strain Estradiol Benzoate 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Amador, A. G., Parkening, T. A., Beamer, W. G., Bartke, A., & Collins, T. J. (1986). Testicular LH receptors and circulating hormone levels in three mouse models for inherited diseases (Tfm/y lit/lit and hyt/hyt). Endocrinologica Experimentalis, 20, 349–358.Google Scholar
  2. Andersson, M., Page, D. C., & de la Chapelle, A. (1986). Chromosome Y-specific DNA is transferred to the short arm of X chromosome in human XX males. Science, 233, 786–788.PubMedCrossRefGoogle Scholar
  3. Arnold, A. P., & Gorski, R. A. (1984). Gonadal steroid induction of structural sex differences in the central nervous system. Annual Review of Neuroscience, 7, 413–442.PubMedCrossRefGoogle Scholar
  4. Attardi, B., & Ohno, S. (1976). Androgen and estrogen receptors in the developing mouse brain. Endocrinology, 99, 1279–1290.PubMedCrossRefGoogle Scholar
  5. Attardi, B., Geller, L. N., & Ohno, S. (1976). Androgen and estrogen receptors in brain cytosol from male, female and testicular feminized (Tfin/iy) mice. Endocrinology, 98, 864–874.PubMedCrossRefGoogle Scholar
  6. Bailey, D. W. (1971). Recombinant-inbred strains. An aid to finding identity, linkage, and function of histocompatibility and other genes. Transplantation, 11, 325–327.PubMedCrossRefGoogle Scholar
  7. Bailey, D. W. (1981). Strategic uses of recombinant inbred, and congenic strains in behavior genetics research. In E. S. Gershon, S. Matthysse, X. O. Breakefield, & R. D. Ciaranello (Eds.), Genetic research strategies for psychobiology and psychiatry (pp. 189–198). Pacific Grove: The Boxwood Press.Google Scholar
  8. Bardin, C. W., & Catterall, J. F. (1981). Testosterone: A major determinant of extragenital sexual dimorphism. Science, 211, 1285–1294.PubMedCrossRefGoogle Scholar
  9. Bardin, C. W., Bullock, L. P., Sherins, R. J., Mowszowicz, I., & Blackburn, W. R. (1973). Part II. Androgen metabolism and mechanism of action in male pseudohermaphroditism: A study of testicular feminization. Recent Progress in Hormone Research, 29, 65–107.PubMedGoogle Scholar
  10. Barley, J., Ginsburg, M., Greenstein, B. D., MacLusky, N.J., & Thomas, P.J. (1974). A receptor mediating sexual differentiation. Nature, 252, 259–260.PubMedCrossRefGoogle Scholar
  11. Barraclough, C. A., & Gorski, R. A. (1962). Studies on mating behavior in the androgen-sterilized rat and their relation to the hypothalamic regulation of sexual behavior in the female rat. Journal of Endocrinology, 25, 175–182.PubMedCrossRefGoogle Scholar
  12. Bartke, A. (1974). Increased sensitivity of seminal vesicles to testosterone in a mouse strain with low plasma testosterone level. Journal of Endocrinology, 60, 145–148.PubMedCrossRefGoogle Scholar
  13. Bartke, A. (1979). Genetic models in the study of anterior pituitary hormones. In J. G. M. Shire (Ed.), Genetic variation in hormone systems, Vol. I (pp. 113–126). Boca Raton: CRC Press.Google Scholar
  14. Bartke, A., & Shire, J. G. M. (1972). Differences between mouse strains in testicular cholesterol levels and androgen target organs. Journal of Endocrinology, 55, 173–184.PubMedCrossRefGoogle Scholar
  15. Batty, J. (1978). Plasma levels of testosterone and male sexual behaviour in strains of the house mouse (Mus musculus). Animal Behaviour, 26, 339–348.PubMedCrossRefGoogle Scholar
  16. Batty, J. (1979). Influence of neonatal injections of testosterone propionate on sexual behavior and plasma testosterone levels in the male house mouse. Developmental Psychobiology, 12, 231–238.PubMedCrossRefGoogle Scholar
  17. Baum, M. J. (1979). Differentiation of coital behavior in mammals: A comparative analysis. Neuroscience and Biobehavioral Reviews, 3, 265–284.PubMedCrossRefGoogle Scholar
  18. Beach, F. A., & Buehler, M. G. (1977). Male rats with inherited insensitivity to androgen show reduced sexual behavior. Endocrinology, 100, 197–200.PubMedCrossRefGoogle Scholar
  19. Bennett, D., Boyse, E. A., Lyon, M. F., Mathieson, B. J., Schied, M., & Yanagisawa, K. (1975). Expression of H-Y (male) antigen in phenotypically female Tfm/Y mice. Nature, 257, 236–238.PubMedCrossRefGoogle Scholar
  20. Bennett, D., Mathieson, B. J., Schied, M., Yanagisawa, K., Boyse, E. A., Wachtel, S. S., & Cattanach, B. M. (1977). Serological evidence for H-Y antigen in Sxr, XX sex-reversed phenotypic males. Nature, 265, 255–257.PubMedCrossRefGoogle Scholar
  21. Berta, P., Hawkins, J. R., Sinclair, A. H., Taylor, A., Griffiths, B. L., Goodfellow, P. N., & Fellous, M. (1990). Genetic evidence equating SRY and the tenths-determining factor. Nature, 348, 448–450.PubMedCrossRefGoogle Scholar
  22. Blizard, R. A., & Fulker, D. W. (1979). Interactions of strain of male and female on the mating behavior of the rat. Behavior and Neural Biology, 25, 99–114.CrossRefGoogle Scholar
  23. Blizzard, R. M. (1979). Overview. In: H. L. Vallet & I. H. Porter (Eds.), Genetic mechanisms of sexual development (pp. 485–490). New York: Academic Press.Google Scholar
  24. Boehme, R. E., & Ciaranello, R. D. (1981). Strain differences in mouse brain dopamine receptors. In E. S. Gershon, S. Matthysse, X. O. Breakefield, & R. D. Ciaranello (Eds.), Genetic research strategies in psychobiology and psychiatry (pp. 231–240). Pacific Grove: The Boxwood Press.Google Scholar
  25. Boehme, R. E., & Ciaranello, R. D..(1982). Genetic control of dopamine and serotonin receptors in brain regions of inbred mice. Brain Research, 266, 51–65.CrossRefGoogle Scholar
  26. Breedlove, S. M. (1986). Cellular analyses of hormone influence on motoneuronal development and function. Journal of Neurobiology, 17, 157–176.PubMedCrossRefGoogle Scholar
  27. Bullock, L. P., & Bardin, C. W. (1974). Androgen receptors in mouse kidney: A study of male, female and androgen-insensitive (tfm/y) mice. Endocrinology, 94, 746–756.PubMedCrossRefGoogle Scholar
  28. Bullock, L. P., Mainwaring, W. I. P., & Bardin, C. W. (1975). The physicochemical properties of the cytoplasmic androgen receptor in the kidneys of normal, carrier female (tfm/+) and androgen-in sensitive (tfm/y) mice. Endocrine Research Communications, 2, 25–45.PubMedCrossRefGoogle Scholar
  29. Burns, R. K. (1961). The role of hormones in the differentiation of sex. In W. C. Young (Ed.), Sex and internal secretions (3rd ed.) (pp. 76–158). New York: Robert E. Krieger.Google Scholar
  30. Campbell, A. B., & McGill, T. E. (1970). Neonatal hormone treatment and sexual behavior in male mice. Hormones and Behavior, 1, 145–150.CrossRefGoogle Scholar
  31. Cattanach, B. M., Pollard, C. E., & Hawkes, S. G. (1971). Sex-reversed mice: XX and XO males. Cytogenetics, 10, 318–337.PubMedCrossRefGoogle Scholar
  32. Cattanach, B. M., Iddon, C. A., Charlton, H. M., Chiappa, S. A., & Fink, G. (1977). Gonadotrophin-releasing hormone deficiency in a mutant mouse with hypogonadism. Nature, 269, 338–340.PubMedCrossRefGoogle Scholar
  33. Champlin, A. K., Blight, W. C., & McGill, T. E. (1963). The effects of varying levels of testosterone on the sexual behaviour of the male mouse. Animal Behavior, 11, 244–245.CrossRefGoogle Scholar
  34. Chang, C., Kokontis, J., & Liao, S. (1988). Molecular cloning of human and rat complementary DNA encoding androgen receptors. Science, 240, 324–326.PubMedCrossRefGoogle Scholar
  35. Charest, N. J., Zhou, Z.-X., Lubahn, D. B., Olsen, K. L., Wilson, E. M., & French, F. S. (1991). A frameshift mutation destabilizes androgen receptor messenger RNA in the Tfm mouse. Molecular Endocrinology, 5, 573–581.PubMedCrossRefGoogle Scholar
  36. Clark, J. H., Schrader, W. T., & O’Malley, B. W. (1985). Mechanisms of steroid hormone action. In J. D. Wilson & D. W. Foster (Eds.), Williams textbook of endocrinology (pp. 33–75). Philadelphia: W. B. Saunders.Google Scholar
  37. Clemens, L. G. (1974). Neurohormonal control of male sexual behavior. In W. Montagna & W. A. Sadler (Eds.), Reproductive behavior (pp. 23–53). New York: Plenum Press.CrossRefGoogle Scholar
  38. Clemens, L. G., & Gladue, B. A. (1978). Feminine sexual behavior in rats enhanced by prenatal inhibition of androgen aromatization. Hormones and Behavior, 11, 190–201.PubMedCrossRefGoogle Scholar
  39. Clemens, L. G., Gladue, B. A., & Coniglio, L. P. (1978). Prenatal endogenous androgenic influences on masculine sexual behavior and genital morphology in male and female rats. Hormones and Behavior, 10, 40–53.PubMedCrossRefGoogle Scholar
  40. Crews, D., & Moore, M. C. (1986). Evolution of mechanisms controlling mating behavior. Science, 231, 121–125.PubMedCrossRefGoogle Scholar
  41. de la Chapelle, A., Tippett, P. A., Wetterstrand, G., & Page, D. (1984). Genetic evidence of X-Y inter change in a human XX male. Nature, 307, 170–171.PubMedCrossRefGoogle Scholar
  42. Doherty, P. C., Baum, M. J., & Finkelstein, J. A. (1985). Evidence of incomplete behavioral sexual differentiation in obese male Zucker rats. Physiology and Behavior, 34, 177–179.PubMedCrossRefGoogle Scholar
  43. Edwards, D. A. (1971). Neonatal administration of androstenedione, testosterone or testosterone propi onate: Effects on ovulation, sexual receptivity and aggressive behavior in female mice. Physiology and Behavior, 6, 223–228.PubMedCrossRefGoogle Scholar
  44. Edwards, D. A., & Burge, K. G. (1971). Early androgen treatment and male and female sexual behavior in mice. Hormones and Behavior, 2, 49–58.CrossRefGoogle Scholar
  45. Ehrhardt, A. A., & Meyer-Bahlburg, H. F. L. (1981). Effects of prenatal sex hormones on gender-related behavior. Science, 211, 1312–1318.PubMedCrossRefGoogle Scholar
  46. Ehrhardt, A. A., Epstein, R., & Money, J. (1968). Fetal androgens and female gender identity in the early-treated adrenogenital syndrome. Johns Hopkins Medical Journal, 123, 160–167.Google Scholar
  47. Eicher, E. M. (1982). Primary sex determining genes in mice. In R. P. Amann & G. E. Seidel, Jr. (Eds.), Prospects for sexing mammalian sperm (pp. 121–135). Boulder: Colorado Associated University Press.Google Scholar
  48. Eicher, E. M., & Washburn, L. L. (1986). Genetic control of primary sex determination in mice. Annual Review of Genetics, 20, 377–360.CrossRefGoogle Scholar
  49. Eichwald, E. J., & Silmser, C. R. (1955). Untitled communication. Transplantation Bulletin, 2, 148–149.PubMedGoogle Scholar
  50. Eil, C. (1983). Familial incomplete male pseudohermaphroditism associated with impaired androgen retention: Studies in cultured skin fibroblasts. Journal of Clinical Investigations, 71, 850–858.CrossRefGoogle Scholar
  51. Eil, C., Merriam, G.R., Bowen, J., Ebert, J., Tabor, E., White, B., Douglass, E. C., & Loriaux, D. L. (1980). Testicular feminization in the chimpanzee. Clinical Research, 28, 624A.Google Scholar
  52. Eleftheriou, B. E., & Elias, P. K. (1975). Recombinant inbred strains: A novel genetic approach for psychopharmacogeneticists. In B. E. Eleftheriou (Ed.), Psychopharmacogenetics (pp. 43–71). New York: Plenum Press.CrossRefGoogle Scholar
  53. Evans, E. P., Burtenshaw, M. D., & Cattanach, B. M. (1982). Meiotic crossing-over between the X and Y chromosomes of male mice carrying the sex-reversed (Sxr) factor. Nature, 300, 443–445,PubMedCrossRefGoogle Scholar
  54. Feder, H. H. (1984). Hormones and sexual behavior. Annual Review of Psychology, 35, 165–200.PubMedCrossRefGoogle Scholar
  55. Festing, M. F. W. (1979). Inbred strains in biomedical research. New York: Oxford University Press.Google Scholar
  56. Forest, M. G. (1981). Inborn errors of testosterone biosynthesis. In Z. Laron & P. Tikva (Eds.), Pediatric and adolescent endocrinology8 (pp. 133–155). Basel: S. Karger.Google Scholar
  57. Fox, T. O. (1975). Androgen- and estrogen-binding macromolecules in developing brain: Biochemical and genetic evidence. Proceedings of the National Academy of Sciences U.S.A., 72, 4303–4307.CrossRefGoogle Scholar
  58. Fox, T. O., Vito, C. C., & Wieland, S.J. (1978). Estrogen and androgen receptor proteins in embryonic and neonatal brain: Hypotheses for roles in sexual differentiation and behavior. American Zoologist, 18, 525–537.Google Scholar
  59. Fox, T. O., Olsen, K. L., Vito, C. C., & Wieland, S.J. (1982). Putative steroid receptors: Genetics and development. In F. O. Schmitt, S. Bird, & F. E. Bloom (Eds.), Molecular genetics and neurosciences: A new hybrid (pp. 289–306). New York: Raven Press.Google Scholar
  60. Fox, T. O., Blank, D., & Politch, J. A. (1983). Residual androgen binding in testicular feminization (Tfm). Journal of Steroid Biochemistry, 19, 577–581.PubMedCrossRefGoogle Scholar
  61. Fulker, D. W. (1970). Maternal buffering of rodent genotypic responses to stress: A complex genotype- environment interaction. Behavioral Genetics, 1, 119–124.Google Scholar
  62. Gerall, A. A., & Ward, I. L. (1966). Effects of prenatal exogenous androgen on the sexual behavior of the female albino rat. Journal of Comparative and Physiological Psychology, 62, 370–375.CrossRefGoogle Scholar
  63. Gibson, M. J., Charlton, H. M., Perlow, M. J., Zimmerman, E. A., Davies, T. F., & Krieger, D. T. (1984). Preoptic area brain grafts in hypogonadal (hpg) female mice abolish effects of congenital hypothalamic gonadotropin-releasing hormone (GnRH) deficiency. Endocrinology, 114, 1938–1940.PubMedCrossRefGoogle Scholar
  64. Gibson, M. J., Krieger, D. T., Zimmerman, E. A., Silverman, A. J., & Perlow, M. J. (1984). Mating and pregnancy can occur in genetically hypogonadal mice with preoptic area brain grafts. Science, 225, 949–951PubMedCrossRefGoogle Scholar
  65. Gibson, M. J., Korovis, G., Silverman, A. J., & Zimmerman, E. A. (1985). Mating behavior in hypogona-dal female mice with GnRH cell-containing brain grafts. Society for Neuroscience, 11, 528.Google Scholar
  66. Gubbay, J., Collignon, J., Koopman, P., Capei, B., Economou, A., Münsterberg, A., Vivian, N., Goodfel-low, P., & Lovell-Badge, R. (1990). A gene mapping to the sex-determining region of the mouse Y chromosome is a member of a novel family of embryonically expressed genes. Nature, 346, 245–250.PubMedCrossRefGoogle Scholar
  67. Goldberg, E. H., Boyse, E. A., Bennett, D., Scheid, M., & Carswell, E. A. (1971). Serological demonstration of H-Y (male) antigen on mouse sperm. Nature, 232, 478–480.PubMedCrossRefGoogle Scholar
  68. Goldstein, J. I., & Wilson, J. D. (1972). Studies on the pathogenesis of the pseudohermaphroditism in the mouse with testicular feminization. Journal of Clinical Investigations, 51, 1647–1658.CrossRefGoogle Scholar
  69. Gorzalka, B. B., & Whalen, R. E. (1974). Genetic regulation of hormone action: Selective effects of progesterone and dihydroprogesterone (5α-pregnane-3,20-dione) on sexual receptivity in mice. Steroids, 23, 499–505.PubMedCrossRefGoogle Scholar
  70. Gorzalka, B. B., & Whalen, R. E. (1976). Effects of genotype on differential behavioral responsiveness to progesterone and 5-α-dihydroprogesterone in mice. Behavioral Genetics, 6, 7–15.CrossRefGoogle Scholar
  71. Gorzalka, B. B., Rezek, D. L., & Whalen, R. E. (1975). Adrenal mediation of estrogen-induced ejacula-tory behavior in the male rat. Physiology and Behavior14, 373–376.PubMedCrossRefGoogle Scholar
  72. Goy, R. W., & Goldfoot, D. A. (1975). Neuroendocrinology: Animal models and problems of human sexuality. Archives of Sexual Behavior, 4, 405–420.PubMedCrossRefGoogle Scholar
  73. Goy, R. W., & Young, W. C. (1957). Strain differences in the behavioral responses of female guinea pigs to alpha-estradiol benzoate and progesterone. Behaviour, 10, 340–354.CrossRefGoogle Scholar
  74. Grady, K. L., Phoenix, C. H., & Young, W. C. (1965). Role of the developing rat testis in differentiation of the neural tissues mediating mating behavior. Journal of Comparative and Physiological Psychology, 59, 176–182.PubMedCrossRefGoogle Scholar
  75. Griffin, J. E. (1979). Testicular feminization associated with a thermolabile androgen receptor in cultured fibroblasts. Journal of Clinical Investigations, 64, 1624–1631.CrossRefGoogle Scholar
  76. Grumbach, M. M., & Conte, F. A. (1985). Disorders of sexual differentiation. In J. D. Wilson & D. W. Foster (Eds.), Williams textbook of endocrinology (pp. 321–401). Philadelphia: W. B. Saunders.Google Scholar
  77. Hall, J. C., Greenspan, R. J., & Harris, W.’A. (1982). Genetic neurobiology, Cambridge: MIT Press.Google Scholar
  78. Harris, G. W. (1964). Sex hormones, brain development and brain function. Endocrinology, 75, 627–648.PubMedCrossRefGoogle Scholar
  79. Hart, B. L. (1972). Manipulation of neonatal androgen: Effects on sexual responses and penile development in male rats. Physiology and Behavior, 8, 841–845.PubMedCrossRefGoogle Scholar
  80. Hart, B. L. (1977). Neonatal dihydrotestosterone and estrogen stimulation: Effects on sexual behavior of male rats. Hormones and Behavior, 8, 193–200.PubMedCrossRefGoogle Scholar
  81. Haseltine, F. P., & Ohno, S. (1981). Mechanisms of gonadal differentiation. Science, 211, 1272–1278.PubMedCrossRefGoogle Scholar
  82. He, W. W., Young, C. Y.-F., & Tindall, D.J. (1990). The molecular basis of the mouse testicular feminization (Tfm) mutation: a frameshift mutation. 72nd Annual Meeting of the Endocrine Society, Atlanta, GA 1990, p. 240.Google Scholar
  83. Imperato-McGinley, J. (1983). Sexual differentiation: Normal and abnormal. In L. Martini & V. H. T. James (Eds.), Current topics in experimental endocrinology (pp. 231–307). New York: Academic Press.Google Scholar
  84. Imperato-McGinley, J., Peterson, R. E., Gautier, T., & Sturla, E. (1979). Androgens and the evolution of male-gender identity among male pseudohermaphrodites with 5α-reductase deficiency. New England Journal of Medicine, 300, 1233–1237.PubMedCrossRefGoogle Scholar
  85. Ingram, D. K., & Corfman, T. P. (1980). An overview of neurobiologies comparisons in mouse strains. Neuroscience and Biobehavioral Reviews, 4, 421–435.PubMedCrossRefGoogle Scholar
  86. Johnson, L. L., Sargent, E. L., Washburn, L. L., & Eicher, E. M. (1982). XY female mice express H-Y antigen. Developmental Genetics, 3, 247–253.CrossRefGoogle Scholar
  87. Johnson, L. M., & Sidman, R. L. (1979). A reproductive endocrine profile in the diabetes (db) mutant mouse. Biology of Reproduction, 20, 552–559.PubMedCrossRefGoogle Scholar
  88. Josso, N., Picard, J. Y., & Tran, D. (1977). The anti-Müllerian hormone. Recent Progress in Hormone Research, 33, 117–160.Google Scholar
  89. Jost, A. (1953). Problems of fetal endocrinology: The gonadal and hypophyseal hormones. Recent Progress in Hormone Research, 8, 379–418.Google Scholar
  90. Jost, A. (1983). Genetic and hormonal factors in sex differentiation of the brain. Psychoneuroendocrinol-ogy, 8, 183–193.CrossRefGoogle Scholar
  91. Jost, A. (1985). Sexual organogenesis. In N. Adler, D. Pfaff, & R. W. Goy (Eds.), Handbook of behavioral neurobiology, Vol. 7 (pp. 3–19). New York: Plenum Press.Google Scholar
  92. Jost, A., & Magre, S. (1984). Testicular development phases and dual hormonal control of sexual organogenesis. In M. Serio, M. Motta, M. Zanisi, & R. L. Martin (Eds.), Sexual differentiation: Basic and clinical aspects, Serono Symposium11 (pp. 1–15). New York: Raven Press.Google Scholar
  93. Jost, A., Vigier, B., Prepin, J., & Perchellet, J. P. (1973). Studies on sex differentiation in mammals. Recent Progress in Hormone Research, 29, 1–41.PubMedGoogle Scholar
  94. Kallman, F. S., Schoenfeld, W. A., & Barrera, S. E. (1944). The genetic aspects of pituitary eunuchoidism. American Journal of Mental Deficiency, 48, 203–236.Google Scholar
  95. Rato, J. (1976). Cytosol and nuclear receptors for 5α-DHT and testosterone in the hypothalamus and hypophysis, and testosterone receptors isolated from neonatal female rat hypothalamus. Journal of Steroid Biochemistry, 17, 1179–1187.Google Scholar
  96. Kato, J., Atsumi, Y., & Inaba, M. (1971). Development of estrogen receptors in the rat hypothalamus. Journal of Biochemistry, 70, 1051–1053.PubMedGoogle Scholar
  97. Kaufman, M., Pinsky, L., Simard, L., & Wong, S. C. (1982). Defective activation of androgen-receptor complexes: A marker of androgen insensitivity. Molecular and Cellular Endocrinology, 25, 151–162.PubMedCrossRefGoogle Scholar
  98. Keenan, B. S., Meyer, W. J. Ill, Hadjian, A. J., Jones, H. W., & Migeon, C. J. (1974). Syndrome of androgen insensitivity in man: Absence of 5α-dihydrotestosterone binding protein in skin fibroblasts. Journal of Clinical Endocrinology and Metabolism, 38, 1143–1146.PubMedCrossRefGoogle Scholar
  99. Koopman, P., Münsterberg, A., Capei, B., Vivian, N., & Lovell-Badge, R. (1990). Expression of a candidate sex-determining gene during mouse testis differentiation. Nature, 348, 450–452.PubMedCrossRefGoogle Scholar
  100. Koopman, P., Gubbay, J., Vivian, N., Goodfellow, P., & Lovell-Badge, R. (1991). Male development of chromosomally female mice transgenic for Sry. Nature, 351, 117–121.CrossRefGoogle Scholar
  101. Krey, L. C., Lieberburg, L, MacLusky, N.J., Davis, P. G., & Robbins, R. (1982). Testosterone increases cell nuclear estrogen receptor levels in the brain of the Stanley-Gumbreck pseudohermaphrodite male rat: Implications for testosterone modulation of neuroendocrine activity. Endocrinology, 110, 2168–2176.PubMedCrossRefGoogle Scholar
  102. Krieger, D. T., & Gibson, M.J. (1984). Correction of genetic gonadotropin hormone-releasing hormone deficiency by preoptic area transplants. In J. R. Sladek, Jr., & D. M. Gash (Eds.), Neural transplants, development and function (pp. 187–203). New York: Plenum Press.CrossRefGoogle Scholar
  103. Krieger, D. T., Perlow, M. J., Gibson, M. J., Davies, T. F., Zimmerman, E. A., Ferin, M., & Charlton, H. M. (1982). Brain grafts reverse hypogonadism of gonadotropin releasing hormone deficiency. Nature, 298, 468–471.PubMedCrossRefGoogle Scholar
  104. Lacroix, A., McKenna, T. J., & Rabinowitz, D. (1979). Sex steroid modulation of gonadotropins in normal men and in androgen insensitivity syndrome. Journal of Clinical Endocrinology and Metabolism, 48, 235–240.PubMedCrossRefGoogle Scholar
  105. Lagerspetz, K. M. J., & Lagerspetz, K. Y. N. (1975). The expression of the genes of aggressiveness in mice: The effect of androgen on aggression and sexual behavior in females. Aggressive Behavior, 1, 291–296.CrossRefGoogle Scholar
  106. Lubahn, D. B., Joseph, D. R., Sullivan, P. M., Willard, H. F., French, F. S., & Wilson, E. M. (1988). Cloning of human androgen receptor complementary DNA and localization to the X chromosome. Science, 240, 327–330.PubMedCrossRefGoogle Scholar
  107. Luine, V. N., MacLusky, N.J., & McEwen, B. S. (1979). Testosterone effects on enzymes in central and peripheral target sites in Tfm mutant mice. Society for Neuroscience, 5, 451.Google Scholar
  108. Luttge, W. G., & Hall, M. R. (1973). Differential effectiveness of testosterone and its metabolites in the induction of male sexual behavior in two strains of albino mice. Hormones and Behavior, 4, 31–43.CrossRefGoogle Scholar
  109. Lyon, M. F. (1961). Gene action in the X-chromosome of the mouse (Mus musculus L.). Nature, 190, 372–373.PubMedCrossRefGoogle Scholar
  110. Lyon, M. F. (1972). X-chromosome inactivation and developmental patterns in mammals. Biology Reviews, 47, 1–35.CrossRefGoogle Scholar
  111. Lyon, M. F., & Glenister, P. H. (1980). Reduced reproductive performance in androgen-resistant Tfm/ Tfm female mice. Proceedings of the Royal Society, London, B208, 1–12.CrossRefGoogle Scholar
  112. Lyon, M. F., & Hawkes, S. G. (1970). X-linked gene for testicular feminization in the mouse. Nature, 227, 1217–1219.PubMedCrossRefGoogle Scholar
  113. Lyon, M. F., Hendry, I., & Short, R. V. (1973). The submaxillary salivary glands as test organs for response to androgen in mice with testicular feminization. Journal of Endocrinology, 58, 357–362.PubMedCrossRefGoogle Scholar
  114. MacLusky, N.J., Chaptal, C., Lieberburg, I., & McEwen, B. S. (1976). Properties and subcellular interrelationships of presumptive estrogen receptor macromolecules in the brains of neonatal and prepubertal female rats. Brain Research, 114, 158–165.PubMedCrossRefGoogle Scholar
  115. MacLusky, N.J., Luine, V. N., Gerlach, J. L., Fischette, C., Naftolin, F., & McEwen, B. S. (1988). The role of androgen receptors in sexual differentiation of the brain: Effects of the testicular feminization (Tfm) gene on androgen metabolism, binding, and action in the mouse. Psychobiology, 16, 381–397.Google Scholar
  116. Manning, A., & McGill, T. E. (1974). Neonatal androgen and sexual behavior in female house mice. Hormones and Behavior, 5, 19–31.PubMedCrossRefGoogle Scholar
  117. Martin, C. R. (1985). Endocrine physiology (pp. 499–569). New York: Oxford University Press.Google Scholar
  118. Mascia, D. N., Money, J., & Ehrhardt, A. A. (1977). Fetal feminization and female gender identity in the testicular feminizing syndrome of androgen insensitivity. Archives of Sexual Behavior, 1, 131–142.CrossRefGoogle Scholar
  119. Mason, A. J., Hayflick, J. S., Zoeller, R. T., Young, W. S. III, Phillips, H. S., Nikolics, K., & Seeburg, P. H. (1986). A deletion truncating the gonadotropin-releasing hormone gene is responsible for hypo gonadism in the hpg mouse. Science, 234, 1366–1371.PubMedCrossRefGoogle Scholar
  120. Mason, A. J., Pitts, S. L., Nikolics, K., Szonyi, E., Wilcox, J. N., Seeburg, P. H., & Stewart, T. A. (1986). The hypogonadal mouse: Reproductive functions restored by gene therapy. Science, 234, 1372–1378.PubMedCrossRefGoogle Scholar
  121. Max, S. R. (1981). Cytosolic androgen receptor in skeletal muscle from normal and testicular feminization mutant (Tfm) rats. Biochemical and Biophysical Research Communications, 101, 792–799.PubMedCrossRefGoogle Scholar
  122. Maxson, S. C. (1981). The genetics of aggression in vertebrates. In P. F. Brain & D. Benton (Eds.), The biology of aggression (pp. 69–104). Alphen aan den Rijn: Sythoff & Noordhoff.CrossRefGoogle Scholar
  123. Maxson, S. C., Ginsburg, B. E., & Trattner, A. (1979). Interaction of Y-chromosomal gene(s) in the development of intermale aggression in mice. Behavior Genetics, 9, 219–226.PubMedCrossRefGoogle Scholar
  124. McDonald, P., Beyer, C., Newton, F. Brien, B., Baker, R., Tan, H. S., Sampson, C., Kitching, P., Green-hill, R., & Pritchard, D. (1970). Failure of 5α-dihydrotestosterone to initiate sexual behavior in the castrated male rat. Nature, 277, 964–965.CrossRefGoogle Scholar
  125. McGill, T. E. (1962). Sexual behavior in three inbred strains of mice. Behaviour, 19, 341–350.CrossRefGoogle Scholar
  126. McGill, T. E. (1978a). Genotype-hormone interactions. In T. E. McGill, D. A. Dewsbury, & B. D. Sachs (Eds.), Sex and behavior (pp. 161–187). New York: Plenum Press.CrossRefGoogle Scholar
  127. McGill, T. E. (1978b). Genetic factors influencing the action of hormones on sexual behavior. In J. B. Hutchison (Ed.), Biological determinants of sexual behavior (pp. 7–28). New York: John Wiley & Sons.Google Scholar
  128. McGill, T. E., & Haynes, C. M. (1973). Heterozygosity and retention of ejaculatory reflex after castration in male mice. Journal of Comparative and Physiological Psychology, 84, 423–429.PubMedCrossRefGoogle Scholar
  129. McGill, T. E., & Manning, A. (1976). Genotype and retention of the ejaculatory reflex in castrated male mice. Animal Behavior, 24, 507–518.CrossRefGoogle Scholar
  130. McGill, T. E., & Tucker, G. R. (1964). Genotype and sex drive in intact and in castrated male mice. Science, 145, 514–515.PubMedCrossRefGoogle Scholar
  131. McLaren, A. (1983). Sex reversal in the mouse. Differentiation, 23(Suppl.), S93-S98.Google Scholar
  132. Meaney, M. J., Stewart, J., Poulin, P., & McEwen, B. S. (1983). Sexual differentiation of social play in rat pups is mediated by the neonatal androgen-receptor system. Neuroendocrinology, 37, 85–90.PubMedCrossRefGoogle Scholar
  133. Meisel, R. L., & Ward, I. L. (1981). Fetal female rats are masculinized by male littermates located caudally in the uterus. Science, 213, 239–242.PubMedCrossRefGoogle Scholar
  134. Meyer, W. J. III, Migeon, B. R., & Migeon, C. J. (1975). A locus on human X-chromosome for dihydro- testosterone receptor and androgen-insensitivity. Proceedings of the National Academy of Sciences, U.S.A., 72, 1469–1472.CrossRefGoogle Scholar
  135. Migeon, C. J., Amrhein, J. A., Keenan, B. S., Meyer, W. J., & Migeon, B. R. (1979). The syndrome of androgen insensitivity in man: Its relation to our understanding of male sexual differentiation. In H. L. Vallet & I. H. Porter (Eds.), Genetic mechanisms of sexual development (pp. 93–128). New York: Academic Press.Google Scholar
  136. Migeon, B. R., Brown, T. R., Axelman, J., & Migeon, C. J. (1981). Studies of the locus for androgen receptor: Localization on the human X chromosome and evidence for homology with the Tfm locus in the mouse. Proceedings National Academy of Sciences, U.S.A., 78, 6339–6343.CrossRefGoogle Scholar
  137. Money, J., & Daléry, J. (1976). Iatrogenic homosexuality: Gender identity in seven 46,XX chromosomal females with hyperadrenocortical hermaphroditism born with a penis, three reared as boys, four reared as girls. Journal of Homosexuality, 1, 357–371.PubMedCrossRefGoogle Scholar
  138. Money, J., & Mazur, T. (1978). Endocrine abnormalities and sexual behavior in man. In J. Money & H. Musaph (Eds.), Handbook of sexology (pp. 485–492). New York: Elsevier.Google Scholar
  139. Money, J., Ehrhardt, A. A., & Masica, D. N. (1968). Fetal feminization induced by androgen insensitivity in the testicular feminizing syndrome: Effect on marriage and maternalism. Johns Hopkins Medical Journal, 123, 105–114.PubMedGoogle Scholar
  140. Money, J., Schwartz, M., & Lewis, V. G. (1984). Adult erotosexual status and fetal hormonal masculinization and demasculinization: 46,XX congenital virilizing adrenal hyperplasia and 46,XY androgeninsensitivity syndrome compared. Psychoneuroendocrinology, 9, 405–414.PubMedCrossRefGoogle Scholar
  141. Moore, C. L. (1985). Another psychobiological view of sexual differentiation. Developmental Review, 5, 18–55.CrossRefGoogle Scholar
  142. Morali, G., Acatécatl, M., & Figueroa, M. T. (1986). Comparative study of the masculine copulatory motor pattern of three strains of rats. Conference on Reproductive Behavior, 18, 103.Google Scholar
  143. Morris, J. M. (1953). The syndrome of testicular feminization in male pseudohermaphrodites. American Journal of Obstetrics and Gynecology, 65, 1192–1211.PubMedGoogle Scholar
  144. Müller, U. (1985). The H-Y antigen: Identification, function, and role in sexuality. In A. A. Sandberg (Ed.), The Y chromosome, part A: Basic characteristics of the Y chromosome (pp. 63–80). New York: Alan R. Liss.Google Scholar
  145. Müller, IL, Donlon, T., Schmid, M., Fitch, N., Richer, C.-L., Lalande, M., & Latt, S. A. (1986). Deletion mapping of the testis determining locus with DNA probes in 46,XX males and in 46,XY and 46,X,dic(Y) females. Nucleic Adds Research, 14, 6489–6505.CrossRefGoogle Scholar
  146. Naess, O., Haug, E., Attramadal, A., Aakvaag, A., Hansson, V., & French, F. (1976). Androgen receptors in the anterior pituitary and central nervous system of the androgen “insensitive” (Tfm) rat: Correlation between receptor binding and effects of androgens on gonadotropin secretion. Endocrinology, 99, 1295–1303.PubMedCrossRefGoogle Scholar
  147. Naftolin, F., Harris, G. W., & Bobrow, M. (1971). Effect of purified luteinizing hormone releasing factor on normal and hypogonadotrophic anosmic men. Nature, 232, 496–497.PubMedCrossRefGoogle Scholar
  148. Naftolin, F., Ryan, K. S., Davies, I. J., Reddy, V. V., Flores, F., Petro, Z. Kuhn, M., White, R. S., Takaoka, Y., & Wolin, L. (1975). The formation of estrogens by central neuroendocrine tissues. In R. O. Greep (Ed.), Recent progress in hormone research (pp. 295–319). New York: Academic Press.Google Scholar
  149. Naftolin, F., Pujol-Amat, P., Corker, C. S., Shane, J. M., Polani, P. E., Kohlinsky, S., Yen, S. S. C., & Bobrow, M. (1983). Gonadotropins and gonadal steroids in androgen insensitivity (testicular femini zation) syndrome: Effects of castration and sex steroid administration. American Journal of Obstetrics and Gynecology, 147, 491–496.PubMedGoogle Scholar
  150. Nes, N. (1966). Testikulaer feminisering hos storfe. Norwegian Veterinarian Medicine, 18, 19–29.Google Scholar
  151. New, M. L, Dupont, B., Grumbach, K., & Levine, L. S. (1983). Congenital adrenal hyperplasia and related conditions. In J. B. Stanbury (Ed.), The Metabolic Basis of Inherited Disease (pp. 973–1000). New York: McGraw-Hill.Google Scholar
  152. Ohno, S. (1979). Major sex-determining genes. New York: Springer Press.CrossRefGoogle Scholar
  153. Ohno, S., & Lyon, M. F. (1970). X-linked testicular feminization in the mouse as a non-inducible regula tory mutation of the Jacob-Monod type. Clinical Genetics, 1, 121–127.CrossRefGoogle Scholar
  154. Ohno, S., Geller, L. N., & YoungLai, E. V. (1974). Tfm mutation and masculinization versus feminization of the mouse central nervous system. Cell, 3, 235–242.CrossRefGoogle Scholar
  155. Olsen, K. L. (1979a). Androgen-insensitive rats are defeminized by their testes. Nature, 279, 238–239.PubMedCrossRefGoogle Scholar
  156. Olsen, K. L. (1979b). Induction of male mating behavior in androgen-insensitive (tfm) and normal (King-Holtzman) male rats: Effect of testosterone propionate, estradiol benzoate and dihydrotes-tosterone. Hormones and Behavior, 13, 66–84.PubMedCrossRefGoogle Scholar
  157. Olsen, K. L. (1983). Genetic determinants of sexual differentiation. In J. Balthazart, E. Prove, & R. Gilles (Eds.), Hormones and behavior in higher vertebrates (pp. 138–158). Heidelberg: Springer-Verlag.CrossRefGoogle Scholar
  158. Olsen, K. L. (1985). Aromatization: Is it critical for differentiation of sexually dimorphic behaviors? In R. Gilles & Balthazart (Eds.), Neurobiology (pp. 149–164). Heidelberg: Springer-Verlag.CrossRefGoogle Scholar
  159. Olsen, K. L. (1987). Androgen-insensitive (Tfm) mice are defeminized but not masculinized. In Second World Congress of Neuroscience, Budapest, 22, S155.Google Scholar
  160. Olsen, K. L., & Fox, T. O. (1981). Differences between androgen-resistant rat and mouse mutants. Society for Neuroscience, 7, 219.Google Scholar
  161. Olsen, K. L., & Whalen, R. E. (1981). Hormonal control of the development of sexual behavior in androgen-insensitive (tfm) rats. Physiology and Behavior, 27, 883–886.PubMedCrossRefGoogle Scholar
  162. Olsen, K. L., & Whalen, R. E. (1982). Estrogen binds to hypothalamic nuclei of androgen-insensitive (tfm) rats. Experientia, 38, 139–140.PubMedCrossRefGoogle Scholar
  163. Olsen, K. L., & Whalen, R. E. (1984). Dihydrotestosterone activates male mating behavior in castrated King-Holtzman rats. Hormones and Behavior, 18, 380–392.PubMedCrossRefGoogle Scholar
  164. Olsen, K. L., Heydorn, W. E., Rodriguez-Sierra, J. F., & Jacobowitz, D. M. (1989). Quantification of proteins in discrete brain regions of androgen-insensitive testicular feminized (Tfm) mice, Neuroendo- crinology, 50, 392–399.CrossRefGoogle Scholar
  165. Page, D. C., de la Chapelle, A., & Weissenbach, J. (1985). Chromosome Y-specific DNA in related human XX males. Nature, 315, 224–226.PubMedCrossRefGoogle Scholar
  166. Page, D. C., Brown, L. G., & de la Chapelle, A. (1987). Exchange of terminal portions of X- and Y-chromosomal short arms in human XX males. Nature, 328, 437–440.PubMedCrossRefGoogle Scholar
  167. Page, D. C., Mosher, R., Simpson, E. M., Fisher, E. M. C., Mardon, G., Pollack, J., McGillivray, B., de la Chapelle, A., & Brown, L. G. (1987). The sex-determining region of the human Y chromosome encodes a finger protein. Cell, 51, 1091–1104.PubMedCrossRefGoogle Scholar
  168. Peterson, R. E., & Imperato-McGinley, J. (1984). Male pseudohermaphroditism due to inherited defi ciencies of testosterone biosynthesis. In M. Serio, M. Motta, M. Zanisi, & L. Martini (Eds.), Sexual differentiation: Basic and clinical aspects (pp. 301–319). New York: Raven Press.Google Scholar
  169. Petit, C., de la Chapelle, A., Levilliers, J., Castillo, S., Noël, B., & Weissenbach, J. (1987). An abnormal terminal X-Y interchange accounts for most but not all cases of human XX maleness. Cell, 49, 595–602.PubMedCrossRefGoogle Scholar
  170. Phoenix, C. H., Goy, R. W., Gerall, A. A., & Young, W. C. (1959). Organizing action of prenatally administered testosterone propionate on the tissues mediating mating behavior in the female guinea pig. Endocrinology, 65, 369–382.PubMedCrossRefGoogle Scholar
  171. Pinsky, L. (1981). Sexual differentiation. In R. Collu, J. R. Ducharme, & H. Guyda (Eds.), Pediatric endocrinology (pp. 231–239). New York: Raven Press.Google Scholar
  172. Plapinger, L., & McEwen, B. S. (1973). Ontogeny of estradiol-binding sites in rat brain. I. Appearance of presumptive adult receptors in cytosol and nuclei. Endocrinology, 93, 1119–1128.PubMedCrossRefGoogle Scholar
  173. Plomin, R., DeFries, J. C., & McClearn, G. E. (1980). Behavioral genetics: A primer. San Francisco: W. H. Freeman.Google Scholar
  174. Pomerantz, S. M., Fox, T. O., Sholl, S. A., Vito, C. C., & Goy, R. W. (1985). Androgen and estrogen receptors in fetal rhesus monkey brain and anterior pituitary. Endocrinology, 116, 83–89.PubMedCrossRefGoogle Scholar
  175. Purvis, K., Haug, E., Clausen, O. P. F., Naess, O., & Hansson, V. (1977). Endocrine status of the testicular feminized male (TFM) rat. Molecular Cellular Endocrinology, 8, 317–334.CrossRefGoogle Scholar
  176. Reddy, V. V. R., Naftolin, F., & Ryan, K.J. (1974). Conversion of androstenedione to estrone by neural tissues from fetal and neonatal rats. Endocrinology, 94, 117–121.PubMedCrossRefGoogle Scholar
  177. Reinisch, J. M. (1976). Effects of prenatal hormone exposure on physical and psychological development in humans and animals: With a note on the state of the field. In E.J. Sachar (Ed.), Hormones, behavior and psychopathology (pp. 69–93). New York: Raven Press.Google Scholar
  178. Reis, D. J., Baker, H., Fink, J. S., & Joh, T. H. (1981). A genetic control of the number of dopamine neurons in mouse brain: Its relationship to brain morphology, chemistry and behavior. In E. S. Gershon, S. Matthysse, X. O. Breakefield, & R. D. Ciaranello (Eds.), Genetic research strategies in psychobiology and psychiatry (pp. 215–230). Pacific Grove: The Boxwood Press.Google Scholar
  179. Robinson, S. M., Fox, T. O., & Sidman, R. L. (1985). A genetic variant in the morphology of the medial preoptic area in voice. Journal of Neurogenetics, 2, 381–388.CrossRefGoogle Scholar
  180. Rosenfeld, J. M., Daley, J. D., Ohno, S., & YoungLai, E. V. (1977). Central aromatization of testosterone in testicular feminized mice. Experientia, 33, 1392–1393.PubMedCrossRefGoogle Scholar
  181. Selmanoff, M. K., & Ginsburg, B. E. (1981). Genetic variability in aggression and endocrine function in inbred strains of mice. In P. F. Brain & D. Benton (Eds.), Multidisciplinary approaches to aggressive research (pp. 247–268). Amsterdam: Elsevier/North-Holland Biomedical Press.Google Scholar
  182. Selmanoff, M. K., Jumonville, J. E., Maxson, S. C., & Ginsburg, B. E. (1975). Evidence for a Y chromosomal contribution to an aggressive phenotype in inbred mice. Nature, 253, 529–530.PubMedCrossRefGoogle Scholar
  183. Selmanoff, M. K., Maxson, S. C., & Ginsburg, B. E. (1976). Chromosomal determinants of intermale aggressive behavior in inbred mice. Behavior Genetics, 6, 53–69.PubMedCrossRefGoogle Scholar
  184. Selmanoff, M. K., Goldman, B. D., & Ginsburg, B. E. (1977). Developmental changes in serum luteinizing hormone, follicle stimulating hormone and androgen levels in males of two inbred mouse strains. Endocrinology, 100, 122–127.PubMedCrossRefGoogle Scholar
  185. Shapiro, B. H., & Goldman, A. S. (1973). Feminine saccharin preference in the genetically androgen insensitive male rat pseudohermaphrodite. Hormones and Behavior, 4, 371–375.CrossRefGoogle Scholar
  186. Shapiro, B. H., Goldman, A. S., Steinbeck, H. F., & Neumann, F. (1976). Is feminine differentiation of the brain hormonally determined? Experientia, 32, 650–651.PubMedCrossRefGoogle Scholar
  187. Shapiro, B. H., Levine, D. C., & Adler, N. T. (1980). The testicular feminized rat: A naturally occurring model of androgen independent brain masculinization. Science, 209, 418–420.PubMedCrossRefGoogle Scholar
  188. Sheridan, P.J. (1978). Localization of androgen- and estrogen-concentrating neurons in the diencepha-lon and telencephalon of the mouse. Endocrinology, 103, 1328–1334.PubMedCrossRefGoogle Scholar
  189. Sheridan, P. J., & Melgosa, R. T. (1983). Aromatization of testosterone to estrogen varies between strains of mice. Brain Research, 273, 285–289.PubMedCrossRefGoogle Scholar
  190. Sheridan, P. J., Sar, M., & Stumpf, W. (1975). Estrogen and androgen distribution in the brain of neonatal rats. In W. E. Stumpf & L. D. Grant (Eds.), Anatomical neuroendocrinology (pp. 134–141). Basel: S. Rarger.Google Scholar
  191. Sherins, R. J., & Bardin, C. W. (1971). Preputial gland growth and protein synthesis in the androgen-in-sensitive male pseudohermaphroditic rat. Endocrinology, 89, 835–841.PubMedCrossRefGoogle Scholar
  192. Shire, J. G. M. (1981). Genes and hormones in mice. In R. J. Berry (Ed.), Biology of the house mouse (pp. 547–574). New York: Academic Press.Google Scholar
  193. Shrenker, P., & Maxson, S. C. (1983). The genetics of hormonal influences on male sexual behavior of mice and rats. Neuroscience and Biobehavioral Reviews, 7, 349–359.PubMedCrossRefGoogle Scholar
  194. Shrenker, P., & Maxson, S. C. (1984). The DBA/lBg and DBA/2Bg Y chromosomes compared for their effects on male sexual behavior. Behavioral and Neural Biology, 42, 33–37.PubMedCrossRefGoogle Scholar
  195. Sidman, R. L. (1982). Mutations affecting the central nervous system in the mouse. In F. O. Schmitt, S.J. Bird, & F. E. Bloom (Eds.), Molecular genetic neuroscience (pp. 389–400). New York: Raven Press.Google Scholar
  196. Siiteli, P. K., & Wilson, J. D. (1974). Testosterone formation and metabolism during male sexual differentiation in the human embryo. Journal of Clinical Endocrinology and Metabolism, 38, 113–125.CrossRefGoogle Scholar
  197. Silvers, W. K., Gasser, D. L., & Eicher, E. M. (1982). H-Y antigen, serologically detectable male antigen and sex determination. Cell, 28, 439–440.PubMedCrossRefGoogle Scholar
  198. Simon, N. G. (1979). The genetics of intermale aggressive behavior in mice: Recent research and alternative strategies. Neuroscience and Biobehavioral Reviews, 3, 97–106.CrossRefGoogle Scholar
  199. Simpson, E., Chandler, P., Goulmy, E., Disteche, C. M., Ferguson-Smith, M. A. & Page, D. C. (1987). Separation of the genetic loci for the H-Y antigen and for testis determination on human Y chromosome. Nature, 326, 876–878.PubMedCrossRefGoogle Scholar
  200. Sinclair, A. H., Berta, P., Palmer, M. S., Hawkins, J. R., Griffiths, B. L., Smith, M. J., Foster, J. W., Frischauf, A.-M., Lovell-Badge, R., & Goodfellow, P. N. (1990). A gene from the human sex-determining region encodes a protein with homology to a conserved DNA-binding motif. Nature, 346, 240–244.PubMedCrossRefGoogle Scholar
  201. Singh, L., & Jones, K. W. (1982). Sex reversal in the mouse (Mus musculus) is caused by a recurrent nonreciprocal crossover involving the X and an aberrant Y chromosome. Cell, 28, 205–216.PubMedCrossRefGoogle Scholar
  202. Södersten, P. (1973). Estrogen-activated sexual behavior in male rats. Hormones and Behavior, 4, 247–256.PubMedCrossRefGoogle Scholar
  203. Staats, J. (1976). Standardized nomenclature for inbred strains of mice: Sixth listing. Cancer Research, 36, 4333–4377.PubMedGoogle Scholar
  204. Stanley, A. J., & Gumbreck, L. G. (1964). Male pseudohermaphroditism with feminizing testes in the male rat—a sex-linked recessive character. The Endocrine Society, 46, 40.Google Scholar
  205. Stanley, A. J., Gumbreck, L. G., Allison, J. E., & Easley, R. B. (1973). Part I. Male pseudohermaphroditism in the laboratory Norway rat. Recent Progress in Hormone Research, 29, 43–64.PubMedGoogle Scholar
  206. Stewart, A. D., Manning, A., & Batty, J. (1980). Effects of Y-chromosome variants on the male behaviour of the mouse Mus musculus. Genetic Research, 35, 261–268.CrossRefGoogle Scholar
  207. Swerdloff, R. S., Batt, R. A., & Bray, G. A. (1976). Reproductive hormonal function in the genetically obese (ob/ob) mouse. Endocrinology, 98, 1359–1364.PubMedCrossRefGoogle Scholar
  208. Tettenborn, U., Dofuku, R., & Ohno, S. (1971). Noninducible phenotype exhibited by a proportion of female mice heterozygous for the X-linked testicular feminization mutation. Nature New Biology, 234, 37–40.PubMedCrossRefGoogle Scholar
  209. Thompson, M. L., & Edwards, D. A. (1971). Experimental and strain determinants of the estrogen-progesterone induction of sexual receptivity in spayed female mice. Hormones and Behavior, 2, 299–305.CrossRefGoogle Scholar
  210. Thorton, J. E., Wallen, K., & Goy, R. W. (1987). Lordosis behavior in males of two inbred strains of guinea pig. Physiology and Behavior, 40, 703–709.CrossRefGoogle Scholar
  211. Vadâsz, C., Kobor, G., & Lajtha, A. (1982). Neuro-behavioral genetic analysis in recombinant inbred strains. In I. Lieblich (Ed.), Genetics of the brain (pp. 127–154). Amsterdam: Elsevier Biomedical Press.Google Scholar
  212. Vadâsz, C., Baker, H., Fink, S. J., & Reis, D.J. (1985). Genetic effects and sexual dimorphism in tyrosine hydroxylase activity in two mouse strains and their reciprocal F1 hybrids. Journal of Neurogenetics, 2, 219–230.PubMedCrossRefGoogle Scholar
  213. Vale, J. R., Ray, D., & Vale, C. A. (1973). The interaction of genotype and exogenous neonatal androgen and estrogen: Sex behavior in female mice. Developmental Psychobiology, 6, 319–327.PubMedCrossRefGoogle Scholar
  214. Vale, J. R., Ray, D., & Vale, C. A. (1974). Neonatal androgen treatment and sexual behavior in males of three inbred strains of mice. Developmental Psychobiology, 7, 483–488.PubMedCrossRefGoogle Scholar
  215. van der Schoot, P. (1980). Effects of dihydrotestosterone and oestradiol on sexual differentiation in male rats. Journal of Endocrinology, 84, 397–407.PubMedCrossRefGoogle Scholar
  216. Verhoeven, G., & Wilson, J. D. (1976). Cytosol androgen binding in submandibular gland and kidney of the normal mouse and the mouse with testicular feminization. Endocrinology, 99, 79–92.PubMedCrossRefGoogle Scholar
  217. Vito, C. C., & Fox, T. O. (1979). Embryonic rodent brain contains estrogen receptors. Science, 204, 517–519.PubMedCrossRefGoogle Scholar
  218. Vito, C. C., & Fox, T. O. (1982). Androgen and estrogen receptors in embryonic and neonatal rat brain. Developmental Brain Research, 2, 97–110.CrossRefGoogle Scholar
  219. Vito, C. C., Wieland, S. J., & Fox, T. O. (1979). Androgen receptors exist throughout the critical period of brain sexual differentiation. Nature, 282, 308–310.PubMedCrossRefGoogle Scholar
  220. Vito, C. C., Baum, M. J., Bloom, C., & Fox, T. O. (1985). Androgen and estrogen receptors in perinatal ferret brain. Journal of Neuroscience, 5, 268–274.PubMedGoogle Scholar
  221. Wachtel, S. S. (1983). H-Y antigen and the biology of sex determination. New York: Grune & Stratton.Google Scholar
  222. Wachtel, S. S., Koo, G. C., & Boyse, E. A. (1975). Evolutionary conservation of H-Y (“male”) antigen. Nature, 254, 270–272.PubMedCrossRefGoogle Scholar
  223. Wachtel, S. S., Ohno, S., Koo, G. C., & Boyse, E. A. (1975). Possible role for H-Y antigen in the primary determination of sex. Nature, 257, 235–236.PubMedCrossRefGoogle Scholar
  224. Ward, B. J., & Charlton, H. M. (1981). Female sexual behaviour in the GnRH deficient, hypogonadal (hpg) mouse. Physiology and Behavior, 27, 1107–1109.PubMedCrossRefGoogle Scholar
  225. Ward, I. L. (1972). Prenatal stress feminizes and demasculinizes the behavior of males. Science, 175, 82–84.PubMedCrossRefGoogle Scholar
  226. Ward, I. L. (1983). Effects of maternal stress on the sexual behavior of male offspring. In M. Schlumpf & W. Lichtensteiger (Eds.), Monograph in neural science, Vol. 9: Drugs and hormones in brain development (pp. 169–175). Basel: S. Karger.Google Scholar
  227. Ward, I. L., & Weisz, J. (1984). Differential effects of maternal stress on circulating levels of corticosterone, progesterone and testosterone in male and female rat fetuses and their mothers. Endocrinology, 114, 1635–1644.PubMedCrossRefGoogle Scholar
  228. Ward, O. B., Jr., Orth, J. M., & Weisz, J. (1983). A possible role of opiates in modifying sexual differentiation. In M. Schlumpf & W. Lichtensteiger (Eds.), Monograph in neural science, Vol. 9: Drugs and hormones in brain development (pp. 194–200). Basel: S. Karger.Google Scholar
  229. Wee, B. E. F., Weaver, D. R., Goldman, B. D., & Clemens, L. G. (1986). Hormonal correlates of masculine sexual behavior after castration. Conference on reproductive behavior, 18, 24.Google Scholar
  230. Weisz, J., & Gibbs, C. (1974). Metabolites of testosterone in the brain of the newborn female rat after an injection of tritiated testosterone. Neuroendocrinology, 14, 72–86.PubMedCrossRefGoogle Scholar
  231. Weisz, J., & Ward, I. L. (1980). Plasma testosterone and progesterone titers of pregnant rats, their male and female fetuses, and neonatal offspring. Endocrinology, 106, 306–316.PubMedCrossRefGoogle Scholar
  232. Whalen, R. E. (1974). Sexual differentiation: Models, methods and mechanisms. In R. C. Friedman, R. M. Richart, & R. L. Vande Wiele (Eds.), Sex differences in behavior (pp. 467–481). New York: John Wiley & Sons.Google Scholar
  233. Whalen, R. E. (1982). Current issues in the neurobiology of sexual differentiation. In A. Vernadakis & P. S. Timiras (Eds.), Hormones in development and aging (pp. 273–304). New York: Spectrum Publications.Google Scholar
  234. Whalen, R. E., & Edwards, D. A. (1967). Hormonal determinants of the development of masculine and feminine behavior in male and female rats. Anatomical Records, 157, 173–180.CrossRefGoogle Scholar
  235. Whalen, R. E., & Olsen, K. L. (1981). Role of aromatization in sexual differentiation: Effects of prenatal ATD treatment and neonatal castration. Hormones and Behavior, 15, 107–122.PubMedCrossRefGoogle Scholar
  236. Whalen, R. E., Yahr, P., & Luttge, W. G. (1985). The role of metabolism in hormonal control of sexual behavior. In N. Adler, D. Pfaff, and R. W. Goy (Eds.), Handbook of behavioral endocrinology, Vol. 7 (pp. 609–993). New York: Plenum Press.Google Scholar
  237. Whalen, R. E., Gladue, B. A., & Olsen, K. L. (1986). Lordotic behavior in male rats: Genetic and hormonal regulation of sexual differentiation. Hormones and Behavior, 20, 73–82.PubMedCrossRefGoogle Scholar
  238. Wieland, S. J., & Fox, T. O. (1979). Putative androgen receptors distinguished in wild-type and testicu- lar-feminized (Tfm) mice. Cell, 17, 781–787.PubMedCrossRefGoogle Scholar
  239. Wieland, S. J., & Fox, T. O. (1981). Androgen receptors from rat kidney and brain; DNA-binding properties of wild-type and tfm mutant. Journal of Steroid Biochemistry, 14, 409–414.PubMedCrossRefGoogle Scholar
  240. Wieland, S. J., Fox, T. O., & Savakis, C. (1978). DNA-binding of androgen and estrogen receptors from mouse brain: Behavior of residual androgen receptor from Tfm mutant. Brain Research, 140, 159–164.PubMedCrossRefGoogle Scholar
  241. Wilson, J. D. (1978). Sexual differentiation. Annual Review of Physiology, 40, 279–306.PubMedCrossRefGoogle Scholar
  242. Wilson, J. D., George, F. W., & Griffin, J. E. (1981). The hormonal control of sexual development. Science, 211, 1278–1284.PubMedCrossRefGoogle Scholar
  243. Wilson, J. D., Griffin, J. E., George, F. W., & Leshin, M. (1981). The role of gonadal steroids in sexual differentiation. Recent Progress in Hormone Research, 37, 1–39.PubMedGoogle Scholar
  244. Wilson, J. D., Griffin, J. E., Leshin, M., & MacDonald, P. C. (1983). The androgen resistance syndromes: 5α-Reductase deficiency, testicular feminization, and related disorders. In J. B. Stanbury (Ed.), The metabolic basis of inherited disease (pp. 1001–1026). New York: McGraw-Hill.Google Scholar
  245. Wimer, R. E., & Wimer, C. C. (1985). Animal behavior genetics: A search for the biological foundations of behavior. In M. R. Rosenzweig & L. W. Porter (Eds.), Annual Review of Psychology, 36, 171–218.Google Scholar
  246. Withyachumnarnkul, B., & Edmonds, E. S. (1982). Plasma testosterone levels and sexual performance of young obese male Zucker rats. Physiology and Behavior, 29, 773–777.PubMedCrossRefGoogle Scholar
  247. Yarbrough, W. G., Quarmby, V. E., Simental, J. A., Joseph, D. R., Sar, M., Lubahn, D. B., Olsen, K. L., French, F. S., & Wilson, E. M. (1990). A single base mutation in the androgen receptor gene causes androgen insensitivity in the testicular feminized rat. The Journal of Biological Chemistry, 265, 8893–8900.PubMedGoogle Scholar
  248. Young, C. Y., Johnson, M. P., Prescott, J. L., & Tindall, D. (1989). The androgen receptor of the testicular-feminized (Tfm) mutant mouse is smaller than the wild-type receptor. Endocrinology, 124, 771–775.PubMedCrossRefGoogle Scholar
  249. Young, J. K., Fleming, M. W., & Matsumoto, D. E. (1986). Sex behavior and the sexually dimorphic hypothalamic nucleus in male Zucker rats. Physiology and Behavior, 36, 881–886.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1992

Authors and Affiliations

  • Kathie L. Olsen
    • 1
  1. 1.Behavioral Neuroendocrinology ProgramNational Science FoundationUSA

Personalised recommendations