Heparan Sulphate Proteoglycans: Molecular Organisation of Membrane-Associated Species and an Approach to Polysaccharide Sequence Analysis

  • John T. Gallagher
  • Jeremy E. Turnbull
  • Malcolm Lyon
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 313)


Heparan sulphate proteoglycans (HSPGs) are normally the most abundant PG components of cell surfaces and basement membranes (1, 2). At the molecular level five core proteins have been described that can be glycanated with HS chains (2, 3) but evidence exists for several other probably distinct species including two cell surface HSPGs in which the core proteins have been shown to bind either TGF-ß (4) or fibroblast growth factor (FGF;5); the former has been named betaglycan. A recent surprising finding was that the secretory granule PG, named serglycin, which normally appears as a heparin or chondroitin sulphate PG, is synthesised as an HSPG in an erythroid cell line (6). The topographical distribution of HSPGs is therefore variable and extensive and probably reflects a broad functional spectrum to which both protein and polysaccharide components will make significant contributions (1, 2, 7).


Heparan Sulphate Core Protein Heparan Sulphate Proteoglycan Human Lung Fibroblast Mouse Mammary Epithelial Cell 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Gallagher, J.T., Lyon, M. and Steward, W.P. (1986). Structure and function of heparan sulphate proteoglycans. Biochem. J. 236: 313.PubMedGoogle Scholar
  2. 2.
    Kjellen, L. and Lindahl, U. (1991). Proteoglycans — Structures and Interactions. Annu. Rev. Biochem. 60: 443.PubMedCrossRefGoogle Scholar
  3. 3.
    Gallagher, J.T. (1989). The extended family of proteoglycans: social members of the pericellular zone. Current Opinion in Cell Biology 1: 1201.PubMedCrossRefGoogle Scholar
  4. 4.
    Cheifetz. S., Andres J.L., and Massague, J. (1988) The transforming growth factor ß-receptor type III in a membrane proteoglycan J. Biol. Chem. 263: 16984.PubMedGoogle Scholar
  5. 5.
    Sakaguchi, K., Yanagishita, M., Takeuchi, Y. and Aurbach, G.D. (1991). Identification of heparan sulphate proteoglycan as a high affinity receptor for acidic fibroblast growth factor (aFGF) in a parathyroid cell line. J.Biol. Chem. 266: 7270.PubMedGoogle Scholar
  6. 6.
    Okayama, M., Oguri, K., Yoshida, K., and Ohkita, T. (1991). Purification and characterisation of novel heparan sulphate proteoglycans produced by murine erythroleukaemia cells in the growing phase. J. Biol. Chem. 266: 38080.Google Scholar
  7. 7.
    Ruoslahti, E. (1988). Structure and biology of proteoglycans. Annu. Rev. Cell Biology 4: 229.CrossRefGoogle Scholar
  8. 8.
    Saunders, S., Jalkanen, M., O’Farrell, S., and Bernfield, M. (1989). Molecular cloning of Syndecan, an integral membrane proteoglycan. J. Cell Biol. 108: 1547.PubMedCrossRefGoogle Scholar
  9. 9.
    Marynen, P., Zhang, J., Cassiman, J-J., Van den Berghe, H., and David, G. (1989). Partial primary structure of the 48 and 90 kilodalton core proteins of cell surface associated heparan sulphate proteoglycans of lung fibroblasts. J. Biol. Chem., 264: 7017.PubMedGoogle Scholar
  10. 10.
    Rapraeger, A., Jalkanen, M., Endo, E., Koda, J. and Bernfield, M. (1985). The cell surface proteoglycan from mouse mammary epithelial cells bears chondroitin sulphate and heparan sulphate glycosaminoglycans. J. Biol. Chem. 260: 11046.PubMedGoogle Scholar
  11. 11.
    Lyon, M., and Gallagher, J.T. (1991). Purification and partial characterisation of the major cell-associated heparan sulphate proteoglycan of rat liver. Biochem. J. 273: 415.PubMedGoogle Scholar
  12. 12.
    Pierce, A., Cowling, G., Lyon, M. and Gallagher, J.T.-unpublished observations.Google Scholar
  13. 13.
    Hayashi, K., Hayashi, M., Jalkanen, M., Firestone, J.H., Trelstad, R.L., and Bernfield, M. (1987). Immunocytochemistry of cell surface heparan sulphate proteoglycan in mouse tissues. A light and electron microscopic study. J. Histochern. Cytochem. 35, 1079.CrossRefGoogle Scholar
  14. 14.
    David, G., Lories, V., Decock, B., Marynen, P., Cassiman, J-J., and Van den Berghe, H. (1999) Molecular cloning of a phosphatidylinositol-anchored membrane heparan sulphate proteoglycan from human lung fibroblasts. J. Cell. Biol. 111: 3165.CrossRefGoogle Scholar
  15. 15.
    Ishihara, M., Fedarko, N. and Conrad, H.E. (1983). Involvement of phosphatidylinositol and insulin in the coordinate regulation of proteoheparan sulphate metabolism and hepatocyte growth. J. Biol. Chem. 262: 4708.Google Scholar
  16. 16.
    Carey, D.J and Todd, D.M. (1989). Membrane anchoring of heparan sulphate proteoglycan by phosphatidylinositol and kinetics of synthesis of peripheral and detergent solubilised proteoglycans in Schwann cells. J. Cell. Biol. 108: 1891.PubMedCrossRefGoogle Scholar
  17. 17.
    Yanagishita, M. and McQuillan, D.J. (1989). Two forms of plasma membrane — intercalated heparan sulphate proteoglycan in rat ovarian granulosa cells. Labelling of proteoglycans with a photoactivatable hydrophobic probe and effect of the membrane anchor-specific phospholipase C. J. Biol. Chem. 264: 17551.PubMedGoogle Scholar
  18. 18.
    Brown, T.A., Bouchard, T., St John, T., Wayner, E. and Carter, W.G. (1991). Human keratinocytes express a new CD44 core protein (CD44E) as a heparan sulphate intrinsic membrane proteoglycan with additional exons. J. Cell. Biol. 113: 207.PubMedCrossRefGoogle Scholar
  19. 19.
    Haynes, B.F., Telen, M.J., Hale, L.P., and Denning, S.M. (1989). CD44 — A molecule involved in leukocyte adherence and T-cell activation. Immunology Today 10: 423.PubMedCrossRefGoogle Scholar
  20. 20.
    Jalkanen, S., Jalkanen, M., Bargatze, R., Tammi, M. and Butcher, E.C. (1988). Biochemical properties of glycoproteins involved in lymphocyte recognition of high endothelial venules in man. J. Immunol. 141: 1615.PubMedGoogle Scholar
  21. 21.
    Gallagher, J.T., Walker, A., Lyon, M. and Evans, W.H. (1988). Heparan sulphate-degrading endoglycosidase in liver plasma membranes. Biochem. J. 250: 719.PubMedGoogle Scholar
  22. 22.
    Gallagher, J.T. and Walker, A. (1985). Molecular distinctions between heparan sulphate and heparin. Analysis of sulphation patterns indicates that heparan sulphate and heparin are separate families of N-sulphated polysaccharides. Biochem. J. 230: 665.PubMedGoogle Scholar
  23. 23.
    Turnbull, J.E. and Gallagher, J.T. (1988). Oligosaccharide mapping of heparan sulphate by polyacrylamide-gradient gel electrophoresis and electrotransfer to nylon membrane. Biochem. J. 251: 597.PubMedGoogle Scholar
  24. 24.
    Gallagher, J.T., and Lyon, M. (1989). Molecular organisation and functions of heparan sulphate. In Heparin, ed by Lane, D.A. and Lindahl, U. pp 135 Edward Arnold, London.Google Scholar
  25. 25.
    Casu, B., Petitou, M., Provasoli, M., and Sinay, P. (1988). Conformational flexibility: a new concept for explaining binding and biological properties of iduronic acid — containing glycosaminoglycans. Trends Biochem. Sci. 13: 221.PubMedCrossRefGoogle Scholar
  26. 26.
    Turnbull, J.E. and Gallagher, J.T. (1991). Distribution of iduronate-2-sulphate residues in heparan sulphate. Evidence of an ordered polymeric structure. Biochem. J. 273: 553.PubMedGoogle Scholar
  27. 27.
    Lindahl, U. (1989). Biosynthesis of heparin and related polysaccharides. In: Heparin, ed. by Lane D.A., and Lindahl, U. pp 159, Edward Arnold, London.Google Scholar
  28. 28.
    Winterbourne, D.J. and Mora, P.T. (1981). Cells selected for high tumourigenicity or transformed by SV4 0 synthesise heparan sulphate with a reduced degree of sulphation. J. Biol. Chem. 256: 4310.PubMedGoogle Scholar
  29. 29.
    Pejler, G., and David, G. (1987). Basement membrane heparan sulphate with high affinity for antithrombin synthesised by normal and transformed mouse mammary epithelial cells. Biochem. J. 248: 69.PubMedGoogle Scholar
  30. 30.
    Winterbourne, D.J. (1982). Binding of heparan sulphate and heparin to control and virus-transformed cells. Bioscience Reports 2: 1009.PubMedCrossRefGoogle Scholar
  31. 31.
    Gallagher, J.T., Turnbull, J.E. and Lyon, M. (1991). Patterns of sulphation in heparan sulphate: polymorphism based on a common structural theme. Int. J. Biochem. — in press.Google Scholar
  32. 32.
    Turnbull, J.E. (1991). Oligosaccharide mapping and sequence analysis of glycosaminoglycans. In: Methods in Molecular Biology — Membrane Methods. Humana Press, New Jersey — in press.Google Scholar
  33. 33.
    Lyon, M., Steward, W.P., Hampson, I.N. and Gallagher, J.T. (1987). Identification of an extended N-acetylated sequence adjacent to the protein-linkage region of fibroblast heparan sulphate. Biochem. J. 242: 493.PubMedGoogle Scholar
  34. 34.
    Turnbull, J.E. and Gallagher, J.T. (1991). Sequence analysis of heparan sulphate indicates defined locations of N-sulphated glucosamine and iduronate 2-sulphate residues proximal to the protein-linkage region. Biochem. J. 277: 297.PubMedGoogle Scholar
  35. 35.
    Rice, K.G., Rottink, M.K. and Linhardt, R.J. (1987). Fractionation of heparin-derived oligosaccharides by gradient polyacrylamide gel electrophoresis. Biochem. J. 244: 515.PubMedGoogle Scholar
  36. 36.
    Linhardt, R.J., Turnbull, J.E., Wang, H., Loganathan, D. and Gallagher, J.T. (1990). Examination of the substrate specificities of heparin and heparan sulphate lyases. Biochemistry 29: 2611.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1992

Authors and Affiliations

  • John T. Gallagher
    • 1
  • Jeremy E. Turnbull
    • 1
  • Malcolm Lyon
    • 1
  1. 1.Cancer Research Campaign Department of Medical OncologyChristie Hospital NHS TrustManchesterUK

Personalised recommendations