Skip to main content

Heparin Protein Interactions

  • Chapter

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 313))

Abstract

To exert their various biological activities, glycosaminoglycans such as heparin often bind to specific proteins; over the years, a number of heparin-binding proteins have been identified. In Table 1, we have listed some of the heparin-binding proteins. These are grouped according to the functions they perform. For example, the heparin-binding growth factors presumably have a common function, e.g. all act as mitogens and have very similar sequences. The matrix proteins fibronectin, laminin, vitronectin, and thrombospondin have very different structures, but all can mediate the substrate adhesion of eucaryotic cells.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. R. L. Jackson, S. J. Busch, and A.D. Cardin, Glycosaminoglycans: Molecular properties, protein interactions and role in physiological processes, Physiological Reviews, 71:481 (1991).

    PubMed  CAS  Google Scholar 

  2. J. T. Gallagher, M. Lyon, and W.P. Steward, Structure and function of heparan sulfate proteoglycans, Biochem. J. 236:313 (1986).

    PubMed  CAS  Google Scholar 

  3. L. Kjellén, and U. Lindahl, Proteoglycans: Structures and interactions, Anna. Rev. Biochem. 60:443 (1991).

    Article  Google Scholar 

  4. K. A. Thomas, M. C. Riley, S. K. Lemmon, N. C. Baglan, and R. A. Bradshaw, Brain fibroblast growth factor, J. Biol. Chem., 255:5517 (1980).

    PubMed  CAS  Google Scholar 

  5. D. Godpodarowicz, Growth factors and their action in vivo and in vitro,J. Pathology, 141:201 (1983).

    Article  Google Scholar 

  6. W. H. Burgess, and T. Maciag, The heparin-binding (fibroblast) growth factor family of proteins, Annu. Rev. Biochem. 58:575 (1989).

    Article  PubMed  CAS  Google Scholar 

  7. M. Klagsbrun, Fibroblast growth factor family, Current Opinion in Cell Biology 2:857 (1990).

    Article  PubMed  CAS  Google Scholar 

  8. X. Zhu, H. Komiya, A. Chirino, S. Faham, G. M. Fox, T. Arakawa, B.T. Hsu, D. C. Rees, Three-dimensional structures of acidic and basic fibroblast growth factors, Science 251:90 (1991).

    Article  PubMed  CAS  Google Scholar 

  9. P. L. Lee, D. E. Johnson, L. S. Cousens, V. A. Fried, and L. T. Williams, Purification and complementary DNA cloning of a receptor for basic fibroblast growth factor, Science 245:57 (1989).

    Article  PubMed  CAS  Google Scholar 

  10. S. Kornbluth, K.E. Paulson, and H. Hanafusa, Novel tyrosine kinase identified by phosphotyrosine antibody screening of cDNA libraries, Mol. Cell. Biol. 8:5541 (1988).

    PubMed  CAS  Google Scholar 

  11. K. Keegan, D.E. Johnson, L. T. Williams, and M. J. Hayman, Isolation of an additional member of the fibroblast growth factor receptor family, FGFR-3, Proc. Natl. Acad. Sci. USA 88:1095 (1991).

    Article  PubMed  CAS  Google Scholar 

  12. J. Partanen, T.P. Mäkelä, E. Erola, J. Korhonen, H. Hirvonen, L. Claesson-Welsh, and K. Alitalo, FGFR-4, a novel acidic fibroblast growth factor receptor with a distinct expression pattern, EMBO Journal 10:1347 (1991).

    PubMed  CAS  Google Scholar 

  13. T. Imamura, K. Engleka, X. Zhan, Y. Tokita, R. Forough, D. Roeder, A. Jackson, J. A. M. Maier, T. Hla, T. Maciag, Recovery of mitogenic activity of a growth factor mutant with a nuclear translocation sequence, Science 249:1567 (1990).

    Article  PubMed  CAS  Google Scholar 

  14. A. D. Cardin, and H. J. R. Weintraub, Molecular modeling of protein-glycosaminoglycan interactions, Arteriosclerosis 9:21 (1989).

    Article  PubMed  CAS  Google Scholar 

  15. J. W. Harper, and R. R. Lobb, Reductive methylation of lysine residues in acidic fibroblast growth factor: Effect on mitogenic activity and heparin affinity, Biochemistry 27:671 (1988).

    Article  PubMed  CAS  Google Scholar 

  16. W. H. Burgess, A. M. Shaheen, M. Ravera, M. Jaye, P. J. Donohue, and J. A. Winkles, Possible dissociation of the heparin-binding and mitogenic activities of heparin-binding (acidic fibroblast) growth factor-1 from its receptor-binding activities by site-directed mutagenesis of a single lysine residue, J. Cell. Biol. 111:2129 (1990).

    Article  PubMed  CAS  Google Scholar 

  17. R. R. Lobb, Thrombin inactivates acidic fibroblast growth factor but not basic fibroblast growth factor, Biochemistry 27:2572 (1988).

    Article  PubMed  CAS  Google Scholar 

  18. T. Mehlman, and W. H. Burgess, Detection and characterization of heparin-binding proteins with a gel overlay procedure, Anal. Biochem. 188:159 (1990).

    Article  PubMed  CAS  Google Scholar 

  19. A. Baird, D. Schubert, N. Ling, and R. Guillemin, Receptor-and heparin-binding domains of basic fibroblast growth factor, Proc. Natl. Acad. Sci. USA 85:2324 (1986).

    Article  Google Scholar 

  20. M. Seno, R. Sasada, T. Kurokawa, and K. Igarishi, Carboxylterminal structure of basic fibroblast growth factor significantly contributes to its affinity for heparin, Eur. J. Biochem., 188:239 (1990).

    Article  PubMed  CAS  Google Scholar 

  21. A. Yayon, M. Klagsbrun, J. D. Esko, P. Leder, and D. M. Ornitz, Cell surface, heparin-like molecules are required for binding of basic fibroblast growth factor to its high affinity receptor, Cell 64:841 (1991).

    Article  PubMed  CAS  Google Scholar 

  22. A. C. Rapraeger, A. Krufka, and B. Olwin, Requirement of heparan sulfate for bFGF-mediated fibroglast growth and myoblast differentiation, Science 252:1705 (1991).

    Article  PubMed  CAS  Google Scholar 

  23. R. Forough, K. Engleka, J. A. Thompson, A. Jackson, T. Imamura, and T. Maciag, Differential expression in Eschericha coli of the α and β forms of heparin-binding acidic fibroblast growth factor-1: potential role of RNA secondary structure, Biochim. Biophys. Acta. (in press).

    Google Scholar 

  24. M. Höök, I. Björk, J. Hopwood, and U. Lindahl, Anticoagulant activity of heparin: Separation of high-activity and low-activity heparin species by affinity chromatography on immobilized antithrombin, FEBS Lett. 66:90 (1976).

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1992 Springer Science+Business Media New York

About this chapter

Cite this chapter

Zhou, F., Höök, T., Thompson, J.A., Höök, M. (1992). Heparin Protein Interactions. In: Lane, D.A., Björk, I., Lindahl, U. (eds) Heparin and Related Polysaccharides. Advances in Experimental Medicine and Biology, vol 313. Springer, Boston, MA. https://doi.org/10.1007/978-1-4899-2444-5_15

Download citation

  • DOI: https://doi.org/10.1007/978-1-4899-2444-5_15

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4899-2446-9

  • Online ISBN: 978-1-4899-2444-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics