Lysosomal Degradation of Heparin and Heparan Sulphate

  • Craig Freeman
  • John Hopwood
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 313)


This review is a limited update of a previous review of enzymes that degrade heparan sulphate (HS) and heparin (Hopwood, 1989). Newly-synthesised HS proteoglycan (HSPG) is internalised from the cell surface and catabolised with a half-time of 4 to 6 h in rat ovarian granulosa cells (Yanagishita and Hascall, 1984), and by more than 28 h in human colon carcinoma cells (Iozzo, 1987). Studies of both cell types have shown the existence of preliminary protease and an initial endoglycosidase activity in non-lysosomal (chloroquine-insensitive compartments) to generate HS intermediates of Mr 10 kDa, and further chloroquine-sensitive endoglycosidic activity to produce HS fragments of Mr 5 kDa which are rapidly degraded in the lysosome by a series of exohydrolases to monosaccharides and sulphate without the generation of intermediates. A number of distinct lysosomal membrane transporters are involved in the efflux of the monomeric products GlcNAc, GlcA and IdoA and sulphate ions from the lysosome (Jonas et al., 1989; Jonas and Jobe, 1990a, 1990b; Mancini et al., 1989) which can be reutilised in biosynthetic pathways (Rome and Hill, 1986).


Heparan Sulphate Carboxy Group Lysosomal Membrane Human Skin Fibroblast Sulphate Ester 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Barzu, T., van Rijn, J. L. M. L., Petitou, M., Tobelem, G. and Caen, J. P., 1987, Heparin degradation in the endothelial cells, Thromb. Res., 47:601.PubMedCrossRefGoogle Scholar
  2. Bielicki, J., Freeman, C., Clements, P. R., and Hopwood, J. J., 1990, Human liver iduronate-2-sulphatase: purification, characterisation and catalytic properties, Biochem. J., 271:75.PubMedGoogle Scholar
  3. Buckmaster, M. J., Ferris, A. L., and Storrie, B., 1988, Effects of pH, detergent and salt on aggregation of Chinese-hamster-ovary-cell lysosomal enzymes, Biochem. J., 249:921.PubMedGoogle Scholar
  4. Clements, P. R., Brooks, D. A., McCourt, P. A. G., and Hopwood, J. J., 1989, Immunopurification and characterisation of human a-L-iduronidase using monoclonal antibodies, Biochem. J., 259:199.PubMedGoogle Scholar
  5. Clements, P. R., Brooks. D. A., Saccone, G. T. P., and Hopwood, J. J., 1985a, Human α-L-iduronidase. Purification, monoclonal antibody production, native and subunit molecular mass, Eur. J. Biochem., 152:21.PubMedCrossRefGoogle Scholar
  6. Clements, P. R., Muller, V., and Hopwood, J. J., 1985b, Human α-L-iduronidase. 2. Catalytic properties, Eur. J. Biochem., 152:29.PubMedCrossRefGoogle Scholar
  7. Freeman, C., and Hopwood, J. J., 1986, Human liver sulphamate sulphohydrolase: determination of native protein and subunit Mr values and influence of substrate aglycone structure on catalytic properties, Biochem. J., 234: 83.PubMedGoogle Scholar
  8. Freeman, C., and Hopwood, J. J., 1987, Human liver N-acetylglucosamine 6-sulphate sulphatase: catalytic properties, Biochem. J., 246:355.PubMedGoogle Scholar
  9. Freeman, C., and Hopwood, J. J., 1989, Human liver glucuronic acid-2-sulphatase: purification, characterization and catalytic properties, Biochem. J., 259:209.PubMedGoogle Scholar
  10. Freeman, C., and Hopwood, J. J., 1991a, The estimation of glucuronate-2-sulphatase activity in skin fibroblast homogenates, Biochem. J., 278: In press.Google Scholar
  11. Freeman, C., and Hopwood, J. J., 1991b, Human glucosamine-6-sulphatase deficiency: diagnostic enzymology towards heparin-derived trisaccharide substrates, Biochem. J., In press.Google Scholar
  12. Freeman, C., and Hopwood, J. J., 1991c, Human liver a-L-iduronidase: catalytic activity toward heparin-derived oligosaccharide substrates, Biochem. J., In press.Google Scholar
  13. Freeman, C., Clements, P. R., and Hopwood, J. J., 1987, Human liver N-acetylglucosamine 6-sulphate sulphatase: purification and characterization, Biochem. J., 246:347.PubMedGoogle Scholar
  14. Gahl, W. A., Tietze, F., Bashan, N., Steinherz, J. D., and Schulman, J. D., 1982, Defective cysteine exodus from isolated lysosomal rich fractions of cystinoic leucocytes, Science. 257:9570.Google Scholar
  15. Gallagher, J. T., Walker, A., Lyon, M., and Evans, W. M., 1988, Heparan sulphate-degrading endoglycosidase in liver plasma membranes, Biochem. J., 250:719.PubMedGoogle Scholar
  16. Hopwood, J. J., 1989, Enzymes that degrade heparin and heparan sulphate, In: ‘Heparin: Chemical and Biological Properties, Clinical Applications’, (Lane D. W., and Lindahl, U., eds), Edward Arnold, London, pp 191.Google Scholar
  17. Hopwood, J. J., and Morris, C. P., 1990, The mucopolysaccharidoses: diagnosis, molecular genetics and treatment, Mol. Biol. Med., 7:381.PubMedGoogle Scholar
  18. Iozzo, R. V., 1987, Turnover of heparan sulfate proteoglycan in human colon carcinoma cells, J. Biol. Chem., 262:1888.PubMedGoogle Scholar
  19. Ishihara, M., Fedarko, N. S., and Conrad, H. E., 1986, Transport of heparan sulphate into nuclei of hepatocytes, J. Biol. Chem., 261:13575.PubMedGoogle Scholar
  20. Jin, L., Nakajima, M., and Nicolson, G. L., 1990, Immunochemical localization of heparanase in mouse and human melanomas. Int. J. Cancer. 45:1088.PubMedCrossRefGoogle Scholar
  21. Jonas, A. J., and Jobe, H., 1990a, Sulfate transport by rat liver lysosomes, J. Biol. Chem., 265:17545.PubMedGoogle Scholar
  22. Jonas, A. J., and Jobe, H., 1990b, N-Acetyl-D-glucosamine countertransport in lysosomal membrane vesicles. Biochem. J., 268:41.PubMedGoogle Scholar
  23. Jonas, A. J., Speller, R. J., Conrad, P. B., and Dubinsky, W. P., 1989, Transport of N-acetyl-D-glucosamine and N-acetyl-D-galactosamine by rat liver lysosomes, J. Biol. Chem., 264:15247.Google Scholar
  24. Krüger, U., and Kresse, H., 1986, Endocytosis of proteoheparan sulfate by cultured skin fibroblasts, Biol. Chem. Hoppe-Seyler, 367:465.PubMedCrossRefGoogle Scholar
  25. Lindahl, U., 1989, Biosynthesis of heparin and related polysaccharides, In: ‘Heparin: Clinical and Biological Properties, Clinical Applications’, (Lane, D., and Lindahl, U., eds), Edward Arnold, London, pp 159.Google Scholar
  26. Mancini, G. M. S., De Jong, H. R., Galjaard, H. and Verheijen, F. W., 1989, Characterisation of a proton-driven carrier for sialic acid in the lysosomal membrane, J. Biol. Chem., 264:15247.PubMedGoogle Scholar
  27. Myerowitz, R., and Neufeld, E. F., 1981, Maturation of α-L-iduronidase in cultured human fibroblasts, J. Biol. Chem., 256:3044.PubMedGoogle Scholar
  28. Nakajima, M., Irimura, T., and Nicolson, G. I., 1988 Heparanase and tumor metastasis, J. Cell Biochem., 36:157.PubMedCrossRefGoogle Scholar
  29. Nakajima, M., Irimura, T., Di Ferrante, N., and Nicolson, G. L., 1984, Metastatic melanoma cell heparanase: characterization of heparan sulfate degradation fragments produced by B16 melanoma endoglucuronidase, J. Biol. Chem., 259:2283.PubMedGoogle Scholar
  30. Neufeld, E. F., and Muenzer, J., 1989, The mucopolysaccharidoses, In: ‘Metabolic Basis of Inherited Disease’, (Scriver, C. R., Beaudet, A. L., Sly, W. S., and Valle, D., eds), McGraw-Hill, New York, 6th Ed., pp 1565.Google Scholar
  31. Oldberg, A., Heldin, C-H., Wasteson, Å., Busch, C., And Höök, M., 1980, Characterization of a platelet endoglycosidase degrading heparin-like polysaccharides, Biochem., 19:5755.CrossRefGoogle Scholar
  32. Oosta, G. M., Favreau, L. V., Beller, D. L., and Rosenberg, R. D., 1982, Purification and properties of human platelet heparitinase, J. Biol. Chem., 257:11249.PubMedGoogle Scholar
  33. Renlund, M., Tietze, F., Gahl, W. A., 1986, Defective sialic acid egress from isolated fibroblast lysosomes of patients with Salla disease, Science, 232:759.PubMedCrossRefGoogle Scholar
  34. Roberts, S. H., Upadhyaya, M., Sarfarazi, M., and Harper, P. S., 1989, Further evidence localising the gene for Hunter’s syndrome to the distal region of the X chromosome, J. Med. Genet., 26:309.PubMedCrossRefGoogle Scholar
  35. Robertson, D. A., Callen, D. F., Baker, E. G., Morris, C. P., and Hopwood, J. J., 1988b, Chromosomal location of the gene for human glucosamine-6-sulphatase to 12q14, Hum. Genet., 79:175.PubMedCrossRefGoogle Scholar
  36. Robertson, D. A., Freeman, C, Nelson, P. V., Morris, C. P., and Hopwood, J. J., 1988a, Human glucosamine 6-sulphatase cDNA reveals homology with steroid sulphatase, Biochem. Biophys. Res. Commun., 157:218.PubMedCrossRefGoogle Scholar
  37. Rome, L. H., and Hill, D. F., 1986, Lysosomal degradation of glycoproteins and glycosaminoglycans: efflux and recycling of sulphate and N-acetylhexosamines, Biochem. J., 235:707.PubMedGoogle Scholar
  38. Scott, H. S., Anson, D. S., Orsborn, A. M., Nelson, P. V., Clements, P. R., Morris, C. P., and Hopwood, J. J., 1991, Human α-L-iduronidase: cDNA isolation and expression. Proc. Natl. Acad. Sci. USA, In press.Google Scholar
  39. Scott, H. S., Ashton, L. J., Eyre, H. J., Baker, E., Brooks, D. A., Callen, D. F., Morris, C. P., and Hopwood, J. J., 1990, α-L-Iduronidase is isolated to chromosome 4p16.3, Am. J. Hum. Genet., 47:802.PubMedGoogle Scholar
  40. Sewell, R. F., Brenchley, P. E. C, and Mallick, N. P., 1989, Human mononuclear cells contain an endoglycosidase specific for heparan sulphate glycosaminoglycan demonstrable with the use of a specific solid-phase metabolically radiolabelled substrate. Biochem. J., 264:777.PubMedGoogle Scholar
  41. Siciliano, L., Fiumara, L. P., Pavone, L., Freeman, C., Robertson, D., Morris, C. P., Hopwood, J. J., DiNatale, P., Musumeci, S., and Horwitz, A. L., 1990, Sanfilippo syndrome type D in two adolescent sisters, J. Med. Genet., 28:402.CrossRefGoogle Scholar
  42. Taylor, J. A., Gibson, G. J., Brooks, D. A., and Hopwood, J. J., 1991, α-L-Iduronidase in normal and mucopolysaccharidosis type I human skin fibroblasts, Biochem. J., 274:263.PubMedGoogle Scholar
  43. Thunberg, L., Bäckström, G., Wasteson, Å., Robinson, H. C., Ögren, S., and Lindahl, U., 1982, Enzymatic depolymerization of heparin-related polysaccharides: substrate specificities of mouse mastocytoma and human platelet endo-β-D-glucuronidase, J. Biol. Chem., 257:10278.PubMedGoogle Scholar
  44. Wilson, P. J., Bielicki, J., Clements, P. R., Occhiodoro, T., Anson, D., Morris, C. P., and Hopwood, J. J., 1990, Hunter syndrome: isolation of a cDNA clone encoding human iduronate-2-sulphatase and analysis of patient DNA, Proc. Natl. Acad. Sci. USA. 87:8531.PubMedCrossRefGoogle Scholar
  45. Wilson, P. J., Suthers, G. K., Callen, D. F., Baker, E., Nelson, P., Cooper, A., Wraith, E. J., Sutherland, G. R., Morris, C. P., and Hopwood, J. J., 1991, Frequent deletions at Xq28 indicate genetic heterogeneity in Hunter syndrome, Hum. Genet., 86:505.PubMedCrossRefGoogle Scholar
  46. Yanagishita, M., and Hascall, V. C., 1984, Metabolism of proteoglycans in rat ovarian granulosa cell culture: multiple intracellular degradative pathways and the effect of chloroquine, J. Biol. Chem., 259:10270.PubMedGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1992

Authors and Affiliations

  • Craig Freeman
    • 1
  • John Hopwood
    • 1
  1. 1.Lysosomal Diseases Research Unit, Department of Chemical PathologyAdelaide Children’s HospitalNorth AdelaideAustralia

Personalised recommendations