Atom-Atom Scattering in the Field of a Laser

  • Marvin H. Mittleman
Part of the Physics of Atoms and Molecules book series (PAMO)

Abstract

Atom-atom scattering is a much richer phenomenon than electron-atom scattering in that there are a greater number of degrees of freedom and consequently a greater number of physical effects which can be observed in it. The introduction of the laser into either problem further enriches them but the degree of enrichment of the atom-atom problem is greatest when the scattering occurs at low relative energy. We therefore restrict our discussion to this problem, which can also be considered an introduction to the theory of laser-controlled chemistry.

Keywords

Coherence Expense Fluor Dura 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes and References

  1. 1.
    See N. F. Mott and H. S. W. Massey, The Theory of Atomic Collisions, Oxford University Press, London (1965), for an early discussion of this approximation.Google Scholar
  2. 2.
    D. R. Bates and R. McCarroll, Proc. R. Soc. London Ser. A 245, 175 (1958).CrossRefGoogle Scholar
  3. 3.
    M. H. Mittleman, Phys. Rev. 122, 499 (1961).CrossRefGoogle Scholar
  4. 4.
    J. C. Y. Chen and K. M. Watson, Phys. Rev. 174, 152 (1968).CrossRefGoogle Scholar
  5. 5.
    A. Russek and S. B. Schneiderman, Phys. Rev. 181, 311 (1969).CrossRefGoogle Scholar
  6. 6.
    M. H. Mittleman, Phys. Rev. 188, 221 (1969)CrossRefGoogle Scholar
  7. 6a.
    M. H. Mittleman and H. Tai, Phys. Rev. A 8, 1880 (1973).CrossRefGoogle Scholar
  8. 7.
    J. von Neumann and E. Wigner, Phys. Z. 30, 467 (1929); however, see O. J. Heilman, J. Math. Phys. 11, 3317 (1970).Google Scholar
  9. 8.
    L. Landau, Phys. Z. Sowjetunion I, 46, 88 (1932)Google Scholar
  10. 8a.
    C. Zener, Proc. R. Soc. London Ser. A 137, 696 (1932)CrossRefGoogle Scholar
  11. 8b.
    E. C. G. Stueckelberg, Helv. Phys. Acta 5, 369 (1932).Google Scholar
  12. 9.
    See J. B. Delos and W. Thorson, Phys. Rev. A 6, 728 (1972), for a comprehensive review and compilation of results.CrossRefGoogle Scholar
  13. 10.
    K. M. Watson, in Properties of Matter under Unusual Conditions (H. Mark and S. Fembach, eds.), Wiley, New York (1968).Google Scholar
  14. 11.
    Such laser-induced reactions have been observed by D. B. Lidow, R. W. Falcone, J. F. Young, and S. Harris, Phys. Rev. Lett. 37, 1590 (1976).CrossRefGoogle Scholar
  15. 12.
    P. Lett, R. Watts, C. Westbrook, and W. Phillips, Phys. Rev. Lett. 61, 169 (1988), and S. Chu, L. Hollberg, J. Bjorkholm, A. Cable, and A. Ashkin, Phys. Rev. Lett. 55, 48 (1985).CrossRefGoogle Scholar
  16. 13.
    This was first suggested by A. Gallagher and D. E. Pritchard, Phys. Rev. Lett. 63, 957 (1989). Refinements were made in P. S. Julienne and J. Vigué, Phys. Rev. A 44, 4464 (1991), and Y. B. Band and P. S. Julienne, Phys. Rev. A 46, 330 (1992).CrossRefGoogle Scholar
  17. 14.
    M. H. Mittleman, Phys. Rev. A 14, 586 (1976).CrossRefGoogle Scholar
  18. 15.
    The translation factors exp(± im R x/2ħ) have been omitted, which limits the validity of the treatment to center-of-mass energies below a kilovolt or so. The translation factors could be included at the expense of a little algebraic complication by the method of Ref. 2. However, the technique used there is not unique as shown in Ref. 3.Google Scholar
  19. 16.
    A simple time-dependent generalization of Feshbach’s [Ann. Phys. (N.Y.) 19, 287 (1962)] optical potential formalism can be used. See Section 8.2.Google Scholar
  20. 17.
    The crossing point R x should be well separated from the classical turning point of the motion. This is a fine point which was discussed briefly in Section 9.2.Google Scholar
  21. 18.
    N. M. Kroll and K. M. Watson, Phys. Rev. A 13, 1018 (1976), have obtained these states with the approximation that there are only two electronic states and a single-mode laser.CrossRefGoogle Scholar
  22. A. M. F. Lau and C. K. Rhodes, Phys. Rev. A 16, 2392 (1977), have extended the treatment to a few electronic states and laser modes.CrossRefGoogle Scholar
  23. 19.
    The index / that appears in (8.3.23) is not necessary here since we neglect direct coupling between the laser and the translational motion in the scattering. This neglect would not be legitimate for projectiles which are electrons (charged and not massive) but is here.Google Scholar
  24. 20.
    L. Landau, Phys. Z. Sowjetunion I, 46, 88 (1932)Google Scholar
  25. 20a.
    C. Zener, Proc. R. Soc. London Ser. A 137, 696 (1932)CrossRefGoogle Scholar
  26. 20b.
    E. C. G. Stueckelberg, Helv. Phys. Acta 5, 369 (1932).Google Scholar
  27. 21.
    J. von Neumann and E. Wigner, Phys. Z. 30, 467 (1929); however, see O. J. Heilman, J. Math. Phys. 11, 3317 (1970).Google Scholar
  28. 22.
    V. S. Smirnov and A. V. Chaplick, Sov. Phys. JETP 44, 913 (1976).Google Scholar
  29. 23.
    When the atoms are far enough apart, this potential goes over to an R~ 7 behavior due to the retardation of the interaction. See H. B. G. Casimir and D. Polder, Phys. Rev. 73, 360 (1948), for the original treatment.CrossRefGoogle Scholar
  30. 24.
    C. D. Wallace, T. P. Dinneen, K.-Y. Tan, T. T. Grove and P. L. Gould, Phys. Rev. Lett. 69, 897 (1992).CrossRefGoogle Scholar
  31. 25.
    The second term in (9.7.3) is formally nonlocal in R. The low-energy approximation can be used to show that it is effectively local.Google Scholar
  32. 26.
    J. Vigué, Phys. Rev. A 34, 4476 (1986).CrossRefGoogle Scholar
  33. 27.
    See Ref. 13, P. S. Julienne and J. Vigué, Phys. Rev. A 44, 4464 (1991), and M. Trippenbach,CrossRefGoogle Scholar
  34. B. Gao, J. Cooper, and K. Burnet, Phys. Rev. A 45, 6555 (1992). See also the last of Ref. 13 for a density matrix approach which treats part of the problem.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1993

Authors and Affiliations

  • Marvin H. Mittleman
    • 1
  1. 1.The City College of the City University of New YorkNew YorkUSA

Personalised recommendations