Research, Development, and Demonstration of Molten Carbonate Fuel Cell Systems

  • J. R. Selman

Abstract

The aim of this chapter is to give an overview of the technology of the molten carbonate fuel cell (MCFC) and to assess the status of MCFC performance. The MCFC is generally considered a “second-generation” fuel cell, whose entry into the power generation market will follow that of the phosphoric acid fuel cell (PAFC), discussed in Chapter 8. In spite of the greater technical difficulties in its development, the MCFC has undeniable advantages over the PAFC, because of its higher electrical efficiency, the possibility of using natural gas without external reforming, and the high-grade waste heat generated. These characteristics allow a spectrum of applications varying from central power generation to industrial or commercial cogeneration. They are directly connected with the higher operating temperature (typically 650°C).

Keywords

Porosity Migration Zirconia Chromium Hydrocarbon 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    G. H. J. Broers, High Temperature Galvanic Fuel Cells, Doctoral thesis, University of Amsterdam, 1958.Google Scholar
  2. 2.
    C. A. Reiser and C. R. Schroll, Abstracts National Fuel Cell Seminar (Norfolk, VA, 1981), p. 144.Google Scholar
  3. 3.
    H. A. Liebhafsky and E. J. Cairns, Fuel Cells and Fuel Batteries (Wiley, New York, 1968), ch. 3, and 4.Google Scholar
  4. 4.
    J. R. Selman and H. C. Maru, in Advanced Molten Salt Chemistry (G. Mamantov and J. Braunstein, eds.), Vol. 4, (Plenum, NY, 1981), p. 159.Google Scholar
  5. 5.
    J. R. Selman and L. G. Marianowski, in Molten Salt Technology (D. G. Lovering, ed.) (Plenum, New York, 1982), p. 323.Google Scholar
  6. 6.
    A. J. Appleby and J. P. Ackerman, eds., Proc. DOE/ERPI Workshop on Molten Carbonate Fuel Cells EPRI WS-78-135, 1979.Google Scholar
  7. 7.
    J. R. Selman and T. D. Claar, eds., Molten Carbonate Fuel Cell Technology (The Electrochemical Society, Pennington, NJ, 1984), PV84-13.Google Scholar
  8. 8.
    J. R. Selman, Energy 11, 153 (1986).CrossRefGoogle Scholar
  9. 9(a).
    N. Q. Minh, J. Power Sources 24, 1–19 (1988); (b) Chemtech Jan., 32–37 (1991).CrossRefGoogle Scholar
  10. 10.
    A. Pigeaud, H. C. Maru, L. Paetsch, J. Doyon, and R. Bernard, in Proc. Symp. Porous Electrodes: Theory and Practice (H. C. Maru, T. Katan, and M. G. Klein, eds.), PV84-8 (The Electrochemical Society, Pennington, NJ, 1984), p. 398.Google Scholar
  11. 11.
    J. R. Selman, Energy 11, 153 (1986).CrossRefGoogle Scholar
  12. 12.
    H. C. Maru and B. S. Baker, Prog. Batt. Solar Cells 5, 264 (1984).Google Scholar
  13. 13.
    H. C. Maru, Quarterly Progress Report, DOE Project DE-AC03-76 (ET-11304) (Energy Research Corporation, Danbury, CT, 1985).Google Scholar
  14. 14.
    T. Murahashi, in Proc. 2nd Molten Carbonate Fuel Cell Symp., PV90-16 (The Electrochemical Society, Pennington, NJ, 1990), p. 100.Google Scholar
  15. 15.
    T. Murahashi, in Proc. 2nd Molten Carbonate Fuel Cell Symposium, PV90-16 (The Electrochemical Society, Pennington, NJ, 1990), p. 100.Google Scholar
  16. 16.
    P. S. Patel, Assessment of a 6500-Btu/kWh Heat Rate Dispersed Generator, (Energy Research Corporation, Nov. 1983), EM-3307, Final Report, EPRI-EM-3307.Google Scholar
  17. 17.
    T. J. George and M. J. Mayfield, Fuel Cells: Technology Status Report, DOE/METC-90/0268, 1990.Google Scholar
  18. 18.
    S. H. Lu and J. R. Selman, in Proc. Symp. MCFC Technology (J. R. Selman and T. D. Claar, eds.), PV84-13 (The Electrochemical Society, Pennington, NJ, 1984), p. 385.Google Scholar
  19. 19.
    K. Kinoshita, F. R. McLarnon, and E. J. Cairns, Fuel Cells, A Handbook DOE/METC-88/6096, 1988, p. 26.Google Scholar
  20. 20.
    L. A. H. Machielse, in Proc. Symp. Modeling Batteries and Fuel Cells (R. E. White, M. W. Verbrugee, and J. F. Stockel, eds.), PV91-10 (The Electrochemical Society, Pennington, NJ, 1991), p. 166.Google Scholar
  21. 21.
    B. S. Baker, in Proc Symp. Molten Carbonate Fuel Cell Technology (J. R. Selman and T. D. Claar, eds.), PV84-13 (The Electrochemical Society, Pennington, NJ, 1984), p. 15.Google Scholar
  22. 22.
    S. N. Simons, R. B. King, and P. R. Prokopius, in Symp. Proc. Fuel Cells Technology: Status and Applications (E. H. Camara, ed.) (Institute of Gas Technology, Chicago, 1982), p. 45.Google Scholar
  23. 23.
    Development of Improved Molten Carbonate Fuel Cell Technology, Final Report Project RP-1085-4 to Electric Power Research Institute (United Technologies Corp., 1983), Fig. 5-10.Google Scholar
  24. 24.
    R. J. Boersma, Energiespectrum 14, 260 (1990).Google Scholar
  25. 25.
    H. C. Maru, L. Paetsch, and A. Pigeaud, in Proc. Symp. Molten Carbonate Fuel Cell Technology (J. R. Selman and T. D. Claar, eds.), PV84-13 (The Electrochemical Society, Pennington, NJ, 1984), p. 20.Google Scholar
  26. 26.
    R. J. Petri and T. G. Benjamin, in Proc. 21st Intersoc. Energy Conversion Engineering Conf., Vol. 2 (American Chemical Society, Washington, D.C., 1986), p. 1156.Google Scholar
  27. 27.
    R. D. Pierce, in Fuel Cells: Technology Status and Applications (Institute of Gas Technology, Chicago, 1982), p. 67.Google Scholar
  28. 28.
    K. Kinoshita, in Proc. DOE/EPRI Workshop on Molten Carbonate Fuel Cells (EPRI-WS-78-135, 1979), p. 4.Google Scholar
  29. 29.
    H. Ishikawa, N. Kusunose, Y. Shundo, S. Maruyama, K. Koseki, and T. Nakanishi, Performance of Bench-Scale MC FC with Electrolyte Plates Made by Paper-Making Method, CRIEPI Report EW91001, 1991.Google Scholar
  30. 30.
    C. E. Baumgartner, V. J. DeCarlo, P. G. Glugla, and J. J. Grimaldi, J. Electrochem. Soc. 132, 57 (1985).CrossRefGoogle Scholar
  31. 31.
    P. G. Glugla and V. J. DeCarlo, J. Electrochem. Soc. 129, 1745 (1982).CrossRefGoogle Scholar
  32. 32.
    C. D. Iacovangelo and B. R. Karas, J. Electrochem. Soc, 133, 1395 (1986).Google Scholar
  33. 33.
    Development of Molten Carbonate Fuel Cell Power Plant, DOE/ET/17019-20, Final Report Contract DE-AC02-80ET 17019, (2 vols.) (General Electric Corp., Schenectady, NY, 1985).Google Scholar
  34. 34.
    L. G. Marianowski, E. T. Ong, R. J. Petri, and R. J. Remick, Development of Internal Manifold Heat Exchanger (IMHEX®) Molten Carbonate Fuel Cell Stacks (42nd Meeting Int. Soc. Electrochem., Montreux, Switzerland, 1991).Google Scholar
  35. 35.
    H. C. Maru, A. Pigeaud, R. Chamberlin, and G. Wilemski, in Proc. Symp. Electrochemical Modeling of Battery, Fuel Cell and Photoenergy Conversion Systems (J. R. Selman and H. C. Maru, eds.) (The Electrochemical Society, Pennington, NJ, 1986), p. 398.Google Scholar
  36. 36.
    H. R. Kunz, J. Electrochem. Soc. 134, 105 (1987).CrossRefGoogle Scholar
  37. 37(a).
    Y. Itoh, Y. Tonoike, Y. Akiyama, M. Nishioka, T. Saito, and N. Furukawa, in Proc. 2nd Symp. MCFC Technology (J. R. Selman, H. C. Maru, D. A. Shores, and I. Uchida, eds.), PV 90-16 (The Electrochemical Society, Pennington, NJ, 1990), p. 169.Google Scholar
  38. (b).
    T. Saito, Y. Itoh, Y. Akiyama, K. Okudo, M. Nishioka, S. Murakami and N. Furukawa J. Power Sources 36, 529 (1991).CrossRefGoogle Scholar
  39. 38.
    R. D. Pierce, J. L. Smith, and R. B. Poeppel, Proc. Symp. Molten Carbonate Fuel Cell Technology (J. R. Selman, and T. D. Claar, eds.), PV84-13 (The Electrochemical Society, Pennington, NJ, 1984), p. 147.Google Scholar
  40. 39.
    L. J. Bregoli and H. R. Kunz, J. Electrochem. Soc. 129, 2711 (1982).CrossRefGoogle Scholar
  41. 40.
    C. Y. Yuh and J. R. Selman, J. Electrochem. Soc. 131, 2062 (1984).CrossRefGoogle Scholar
  42. 41.
    H. R. Kunz, L. J. Bregoli, and S. T. Szymanski, J. Electrochem. Soc. 131, 2815 (1984).Google Scholar
  43. 42.
    J. R. Selman, in Tutorial Lectures in Electrochemical Engineering and Technology (R. Alkire and T. Beck, eds.), A.I.Ch.E. Symp. Ser. 204, Vol. 77, 138 (1981).Google Scholar
  44. 43.
    C. Y. Yuh and J. R. Selman, J. Electrochemical Soc. 138, 3542 (1991).Google Scholar
  45. 44.
    S. Takashima, K. Ohtsuka, N. Kobayashi, and H. Fujimura, in Proc, Second Int. Symp. MCFC Technology (J. R. Selman, H. C. Maru, D. A. Shores, and I. Uchida, eds.), PV90-16 (The Electrochemical Society, Pennington, NJ, 1990), p. 378.Google Scholar
  46. 45.
    G. Wilemski and T. L. Wolf, in Proc. Symp. Electrochemical and Thermal Modeling of Battery, Fuel Cell, and Photoenergy Conversion Systems (J. R. Selman and H. C. Maru, eds.), PV86-12 (The Electrochemical Society, Pennington, NJ, 1986), p. 334.Google Scholar
  47. 46.
    J. R. Huff, in 1986 Fuel Cell Seminar (Tucson, AZ).Google Scholar
  48. 47.
    H. C. Maru (ERC), private communication, 1985.Google Scholar
  49. 48.
    H. R. Kunz and L. A. Murphy, in Proc. Symp. Electrochemical and Thermal Modeling of Battery, Fuel Cell, and Photoenergy Conversion Systems (J. R. Selman and H. C. Maru, eds.), PV86-12 (The Electrochemical Society, Pennington, NJ, 1986), 395.Google Scholar
  50. 49.
    B. S. Baker, in Proc. Symp. MCFC Technology (J. R. Selman and T. D. Claar, eds), PV84-13 (The Electrochemical Society, Pennington, NJ, 1984), p. 15.Google Scholar
  51. 50.
    Y. Mugikura, T. Abe, T. Watanabe, and Y. Izaki, Development of a Correlation Equation for the Performance of MCFC CRIEPI-EW91002, 1991.Google Scholar
  52. 51(a).
    E. J. Cairns and A. D. Tevebaugh, J. Chem. Eng. Data 9, 453 (1964); (b) A. Pigeuad and J. Klinger, Study of the Effects of Soots, Paniculate and Other Contaminants on Molten Carbonate Fuel Cells Fueled by Coal Gas, Final report to U.S. DOE under contract no. DE-AC21-84MC21154, 1987.CrossRefGoogle Scholar
  53. 52.
    Development of Improved Molten Carbonate Fuel Cell Technology, Final Report to Electric Power Research Institute (United Technologies Corp., 1983), EPRI-RP-1085.Google Scholar
  54. 53.
    G. H. J. Broers and B. W. Treijtel, Adv. Energy Conver. 5, 365 (1965).CrossRefGoogle Scholar
  55. 54.
    B. S. Baker, S. Gionfriddo, A. Leonida, H. Maru, and P. Patel, Internal Reforming Natural Gas Fueled Carbonate Fuel Cell Stack, Final Report to Gas Research Institute (Energy Research Corporation, 1984), GRI Contract 5081-244-0545.Google Scholar
  56. 55.
    K. Ota, S. Mitsushima, K. Kato, and N. Kamiya, in Proc. 2nd Symp. Molten Carbonate Fuel Cell Technology (J. R. Selman, H. C. Maru, D. A. Shores, and I. Uchida, eds.), PV90-16 (The Electrochemical Society, Pennington, NJ, 1990), p. 318.Google Scholar
  57. 56.
    A. J. Appleby and F. R. Foulkes, Fuel Cell Handbook (Van Nostrand Reinhold, New York, 1989), p. 560.Google Scholar
  58. 57.
    L. G. Marianowski, private communication (Institute of Gas Technology, 1984).Google Scholar
  59. 58.
    D. A. Shores and P. Singh, in Proc. Symp. Molten Carbonate Fuel Cell Technology (J. R. Selman and T. D. Claar, eds.), PV84-13 (The Electrochemical Society, Pennington, NJ, 1984), p. 271.Google Scholar
  60. 59.
    C. Y. Yuh, in Proc. 2nd Symp. Molten Carbonate Fuel Cell Technology (J. R. Selman and T. D. Claar, eds.), PV90-16 (The Electrochemical Society Inc., Pennington, NJ, 1990), p. 368.Google Scholar
  61. 60.
    R. A. Donado, L. G. Marianowski, H. C. Maru, and J. R. Selman, J. Electrochem. Soc. 131, 2535 (1984).CrossRefGoogle Scholar
  62. 61.
    S. Sato, in Proc. 2nd Symp. Molten Carbonate Fuel Cell Technology (J. R. Selman, D. A. Shores, H. C. Maru, and I. Uchida, eds.), PV90-16 (The Electrochemical Society, Pennington, NJ, 1990), p. 137.Google Scholar
  63. 62.
    K. Kinoshita, F. R. McLarnon, and E. J. Cairns, Fuel Cells, A Handbook (DOE/METC-88/6096, May 1988), p. 78.Google Scholar
  64. 63.
    G. L. Anderson and P. C. Garrigan, in Proc. Symp Molten Carbonate Fuel Cell Technology (J. R. Selman and T. D. Claar, eds), PV84-13 (The Electrochemical Society, Pennington, NJ, 1984), p. 299.Google Scholar
  65. 64.
    A. Pigeaud, C. Y. Yuh, and S. F. Hon, in Proc. First Ann. Fuel Cells Contributors Rev. Meeting (W. J. Huber, ed.) DOE/METC-89/6105, 1989, p. 214.Google Scholar
  66. 65.
    W. M. Vogel and S. W. Smith, J. Electrochem. Soc. 129, 1441 (1982).CrossRefGoogle Scholar
  67. 66.
    S. W. Smith, H. R. Kunz, W. M. Vogel, and S. J. Szymanski, in Proc. Symp. Molten Carbonate Fuel Cell Technology (J. R. Selman and T. D. Claar, eds.), PV84-13 (The Electrochemical Society, Pennington, NJ, 1984), p. 246.Google Scholar
  68. 67.
    L. G. Marianowski, Progr. Batt. Solar Cells 5, 283 (1984).Google Scholar
  69. 68.
    R. J. Remick, Effects of H 2 S on Molten Carbonate Fuel Cells, Final report, (Institute of Gas Technology, Chicago, May 1986), DOE/MC/20212-2039.Google Scholar
  70. 69.
    R. J. Remick, Effects of H 2 S on Molten Carbonate Fuel Cells, Final Report, section 3, (Institute of Gas Technology, Chicago, May 1986), DOE/MC/20212-2039.Google Scholar
  71. 70.
    R. J. Remick, J. R. Jewulski, T. L. Osif, and R. Donelsen, Contaminant Resistant Molten Carbonate Fuel Cell, Final Report, (Institute of Gas Technology, Chicago, 1988), Contract DE-AC21-86MC23023.Google Scholar
  72. 71.
    R. J. Remick, T. L. Osif, and M. G. Lawson, Sulfur-Tolerant Anode Materials, Final report, (Institute of Gas Technology, Chicago, 1986), Contract DE-AC21-86MC23267.Google Scholar
  73. 72.
    S. H. Lu, in Proc. 2nd Symp. Molten Carbonate Fuel Cell Technology (J. R. Selman, H. C. Maru, D. A. Shores, and I. Uchida, eds.), PV90-16 (The Electrochemical Society, Pennington, NJ, 1990), p. 251.Google Scholar
  74. 73.
    A. Pigeaud, in Proc. Sixth Ann. Contractors Meeting on Contaminant Control in Coal-Derived Gas Streams (K. E. Markel and D. C. Cicero, eds.), DOE/METC-86/6042, 1986.Google Scholar
  75. 74.
    A. Pigeaud, Progress Report by Energy Research Corporation to U.S. Department of Energy, Contract DE-AC21-84MC21154 (Morgantown, WV, 1987).Google Scholar
  76. 75.
    Fuel Cell Research on Second-Generation Molten Carbonate Systems, Project 9105, Final technical report (Institute of Gas Technology, Chicago, 1978), SAN-1735-4.Google Scholar
  77. 76.
    A. J. Appleby and F. R. Foulkes, Fuel Cell Handbook (Van Nostrand Reinhold, New York, 1989).Google Scholar
  78. 77.
    I. Uchida, in Proc. 2nd Symp. MCFC Technology (J. R. Selman, H. C. Maru, D. A. Shores, and I. Uchida, eds), PV90-16 (The Electrochemical Society, Pennington, NJ, 1990), p. 206.Google Scholar
  79. 78.
    J. R. Selman, in Proc. 2nd Symp. MCFC Technology (J. R. Selman, H. C. Maru, D. A. Shores, and I. Uchida, eds), PV90-16 (The Electrochemical Society, Pennington, NJ, 1990), p. 187.Google Scholar
  80. 79.
    C. Y. Yuh and J. R. Selman, J. Electrochem. Soc. 131, 2062 (1984).CrossRefGoogle Scholar
  81. 80.
    C. Y. Yuh and J. R. Selman, J. Electrochem. Soc. 139, 1373 (1992).CrossRefGoogle Scholar
  82. 81.
    G. L. Lee, Dynamic Analysis of MCFC Porous Electrodes, thesis (Illinois Institute of Technology, Chicago, May 1992).Google Scholar
  83. 82.
    C. Y. Yuh and A. Pigeaud, Determination of Optimum Electrolyte Composition for Molten Carbonate Fuel Cells, Final report (Energy Research Corporation, Danbury, CT, 1989), DOE/MC/23264-2756.Google Scholar
  84. 83.
    K. Ota, B. Kim, S. Asano, H. Yoshitake, and N. Kamiya, in Proc. Int. Fuel Cell Conf. (Makuhari, Japan, 1992), p. 165.Google Scholar
  85. 84.
    K. Tanimoto, Y. Miyazaki, M. Yanagida, S. Tanase, T. Kojima, H. Okuyama, and T. Kodama, in Proc. 2nd Symp. Molten Carbonate Fuel Cell Technology (J. R. Selman, H. C. Maru, D. A. Shores, and I. Uchida, eds.), PV90-16 (The Electrochemical Society, Pennington, NJ, 1990), p. 357.Google Scholar
  86. 85.
    K. Tanimoto, Y. Miyazaki, M. Yanagida, S. Tanse, T. Kojima, N. Ohtori, H. Okuyama, and T. Kodama, in Proc. Int. Fuel Cell Conf (Makuhari, Japan, 1992), p. 185.Google Scholar
  87. 86.
    L. G. Marianowski, private communication (Institute of Gas Technology, Chicago, 1991).Google Scholar
  88. 87.
    L. G. Marianowski and J. B. O’Sullivan, Status of MCFC Technology (8th Ann. Energy Technology Conf. Exp., Washington D.C., 1981).Google Scholar
  89. 88.
    E. T. Ong and T. D. Claar, in Proc. Symp. Molten Carbonate Fuel Cell Technology (J. R. Selman and T. D. Claar, eds.), PV84-13 (The Electrochemical Society, Pennington, NJ, 1984), p. 54.Google Scholar
  90. 89.
    H. Urushibata and T. Murahashi, in Proc. Int. Fuel Cell Conf. (Makuhari, Japan, 1992), p. 223.Google Scholar
  91. 90.
    H. Urushibata and T. Murahashi, in Proc. 32nd Battery Symp. (Kyoto, Japan 1991), p. 17.Google Scholar
  92. 91.
    M. C. Williams and T. J. George, in Proc. 26th IECEC, Am. Nucl. Soc. (LaGrange Park, IL, 1991), p. 577.Google Scholar
  93. 92.
    H. R. Kunz and J. W. Pandolfo, J. Electrochem. Soc. 138, 1549 (1992).CrossRefGoogle Scholar
  94. 93.
    R. J. Boersma, Energie Spectrum 10, 260 (1990).Google Scholar
  95. 94.
    J. M. King, A. P. Meyer, C. A. Reiser, and C. R. Schroll, Molten Carbonate Fuel Cell Verification and Scale-Up (EPRI, Palo Alto, CA, 1985), EM-4129.Google Scholar
  96. 95.
    S. Sato, in Proc. 2nd Symp. Molten Carbonate Fuel Cell Technology (J. R. Selman, H. C. Maru, D. A. Shores, and I. Uchida, eds.) PV90-16 (The Electrochemical Society, Pennington, NJ, 1990), p. 137.Google Scholar
  97. 96.
    L. G. Marianowski, E. T. Ong, R. J. Petri, and R. J. Remick, Development of Internal Manifold Heat Exchanger (IMHEX®) Molten Carbonate Fuel Cell Stacks (42nd Meeting Int. Soc. Electrochem., Montreux, Switzerland, 1991).Google Scholar
  98. 97.
    M. Ohtsubo, Y. Kato, N. Zaima, S. Kasa, T. Shima, and A. Tezuka, IH1 Eng. Rev. 24, 90 (1991).Google Scholar
  99. 98.
    R. J. Boersma, L. A. H. Machielse, and R. Ijpelaan, in Proc. Int. Fuel Cell Conf. (Makuhari, Japan, 1992), p. 255.Google Scholar
  100. 99.
    L. A. H. Machielse, R. J. Boersma, C. Croon, W. M. A. Klerks, and G. Rietveld, in Proc. Int. Fuel Cell Conf. (Makuhari, Japan, 1992), p. 269.Google Scholar
  101. 100.
    M. Hosaka, Y. Yamamasu, M. Tooi, N. Zaima, and T. Matsuyama, IH1 Eng. Rev. 31, 414 (1991).Google Scholar
  102. 101.
    S. Takashima, K. Ohtsuka, T. Kahara, M. Takeuchi, Y. Fukui, and H. Fujimura, in Proc. Int. Fuel Cell Conf. (Makuhari, Japan, 1992), p. 265.Google Scholar
  103. 102.
    A. J. Appleby and J. R. Selman, in Electrochemical Hydrogen Technologies (H. Wendt, ed.) (Elsevier, New York, 1990), p. 456.Google Scholar
  104. 103.
    M. Ohtsubo, Y. Kato, N. Zaima, S. Kasa, T. Shima, and A. Tezuka, IHI Eng. Rev. 1A, 90 (1991).Google Scholar
  105. 104.
    M. Koga, T. Kamata, S. Kawakami, and K. Tanigawa, IHI Eng. Rev. 31, 421 (1991).Google Scholar
  106. 105.
    L. A. H. Machielse, R. J. Boersma, C. Croon, W. M. A. Klerks, and G. Rietveld, in Proc. Int. Fuel Cell Conf. (Makuhari, Japan, 1992), p. 269.Google Scholar
  107. 106.
    Y. Yamamasu, T. Kakihara, E. Kasai, and T. Morita, in Proc. Int. Fuel Cell Conf (Makuhari, Japan, 1992), p. 161.Google Scholar
  108. 107.
    E. J. Vesely, Corrosion of Materials in Molten Carbonate Fuel Cells, Final report DE-AC21-86MC23265 (HT Research Institute, Chicago, 1990).Google Scholar
  109. 108.
    Y. Miyazaki, M. Yanagida, K. Tanomoto, S. Tanase, T. Kodama, H. Itoh, C. Nagai, and K. Morimoto, in Abstracts 1988 Fuel Cell Seminar, p. 304.Google Scholar
  110. 109.
    S. van der Molen, private communication (ECN, Petten, Netherlands, 1991).Google Scholar
  111. 110.
    T. J. George and M. J. Mayfield, Fuel Cells, Technology status report, DOE/METC-90/0268, 1990.Google Scholar
  112. 111.
    H. C. Maru, M. Farooque, and A. Pigeaud, in Proc. 2nd Symp. Molten Carbonate Fuel Cell Technology, PV90-16 (The Electrochemical Society, Pennington, NJ, 1990), p. 121.Google Scholar
  113. 112.
    Proc. 3rd Ann. Fuel Cells Contractors Rev. Meeting (W. J. Huber, ed.), DOE/METC-91/6120, 1991).Google Scholar
  114. 113.
    A. Suzuki, M. Tooi, M. Hosaka, T. Matsuyama, Y. Masuda, T. Nakane, and T. Osato, in Proc. Int. Fuel Cell Conf. (Makuhari, Japan, 1992), p. 273.Google Scholar
  115. 114.
    Y. Yamamasu, T. Kakihara, E. Kasai, and T. Morita, in Proc. Int. Fuel Cell Conf. (Makuhari, Japan, 1992), p. 161.Google Scholar
  116. 115.
    S. Takashima, K. Ohtsuka, T. Kahara, M. Takeuchi, Y. Fukui, and H. Fujimura, in Proc Int. Fuel Cell Conf. (Makuhari, Japan, 1992), p. 265.Google Scholar
  117. 116.
    Research and Development on Fuel Cell Power Generation Technology, FY 1990 annual report (NEDO, Tokyo, Japan, 1991), p. 81.Google Scholar
  118. 117.
    H. Ozu, T. Akasaka, K. Nakagawa, H. Tateishi, and K. Tada, in Proc. 32nd Battery Symp. (Japan, 1991), p. 25.Google Scholar
  119. 118.
    T. Nishimura, K. Sato, and T. Murahashi, in Proc. 32nd Battery Symp. (Japan, 1991), p. 15.Google Scholar
  120. 119_T. Kakihara, C. Shindou, M. Koga, and Y. Yamamasu, in Proc. 32nd Battery Symp. (Japan, 1991), p. 119.Google Scholar
  121. 120.
    L. G. Marianowski, E. T. Ong, R. J. Petri, and R. J. Remick, Development of Internal Manifold Heat Exchanger (IMHEX®) Molten Carbonate Fuel Cell Stacks (42nd Meeting Int. Soc. Electrochem., Montreux, Switzerland, 1991).Google Scholar
  122. 121.
    R. J. Boersma, Energie Spectrum 10, 260 (1990).Google Scholar
  123. 122.
    M. Yamamoto and S. Takahashi, in Proc. Int. Fuel Cell Conf. (Makuhari, Japan, 1992), p. 181.Google Scholar
  124. 123.
    T. Watanabe, M. Koga, and S. Morishima, in Abstracts 1988 Fuel Cell Seminar (Long Beach, CA, 1988), p. 56.Google Scholar
  125. 124.
    T. Watanabe, T. Hirata, and M. Mizusawa, IHI Eng. Rev. 31, 430 (1991).Google Scholar
  126. 125.
    S. Takashima, K. Ohtsuka, N. Kobayashi, and H. Fujimura, in Proc. 2nd Molten Carbonate Fuel Cell Symp, PV90-16 (The Electrochemial Society, Pennington, NJ, 1990), p. 378.Google Scholar
  127. 126.
    N. Kobayashi, H. Fujimura, and K. Ohtsuka, JSMA Intn. J. Ser. II 32, 420 (1989).Google Scholar
  128. 127.
    T. Tanaka, T. Murahashi, and T. Nishimura, in Proc. 23rd Intersoc. Energy Conv. Eng. Conf, 1988, p. 245.Google Scholar
  129. 128.
    T. Tanaka, M. Matsumura, Y. Gonjio, C. Hirai, T. Okada, and M. Miyazaki, in Proc. 25th Intersoc. Energy Conv. Eng. Conf, 1990, p. 201.Google Scholar
  130. 129.
    A. J. Appleby, Ann. Rev. Energy 267 (1988).Google Scholar
  131. 130.
    E. H. Camara and E. T. Ong, National Fuel Cell Seminar Abstracts, 1983, p. 46.Google Scholar
  132. 131.
    T. Tanaka, M. Matsumura, T. Gonjo, M. Miyazaki, A. Sasaki, K. Sato, H. Urushibata, and T. Murahashi, in Proc. 26th Intersoc. Energy Conv. Eng. Conf, 1991, p. 583.Google Scholar
  133. 132.
    M. Matsumura, Y. Gonjyo, C. Hirai, and T. Tanaka, in Proc. Int. Fuel Cell Conf (Makuhari, Japan, 1992), p. 247.Google Scholar
  134. 133.
    T. Okada, H. Ide, M. Miyazaki, T. Tanaka, S. Narita, and J. Ohtsuki, in Proc. 25th Intersoc. Energy Conv. Eng. Conf, 1990, p. 207.Google Scholar
  135. 134.
    J. Ohtsuki, A. Kusunoki, T. Murahashi, T. Tanaka, and E. Nishiyama, in Proc. Int. Fuel Cell Conf. (Makuhari, Japan, 1992), p. 251.Google Scholar
  136. 135.
    H. Ide, T. Okada, M. Miyazaki, T. Tanaka, and J. Ohtsuki, Proc. 32nd Battery Symp. (Kyoto, Japan, 1991), p. 19.Google Scholar
  137. 136.
    H. C. Maru, M. Farooque, L. Paetsch, C. Y. Yuh, P. Patel, J. Doyon, R. Bernard, and A. Skok, in Proc. Int. Fuel Cell Conf (Makuhari, Japan, 1992), p. 145.Google Scholar
  138. 137.
    H. C. Maru, private communication (Energy Research Corporation, 1992).Google Scholar
  139. 138.
    C. Hirai, M. Matsumura, and T. Tanaka, in Proc. 32nd Battery Symp. (Kyoto, Japan, 1991), p. 21.Google Scholar
  140. 139.
    M. N. Mugerwa, L. J. M. J. Blomen, and K. G. Staller, Design Optimisation and Environmental Aspects of Fuel Cell Systems (Report to PEO, Utrecht, Netherlands, 19.65-010.10 (KTI BV, Zoetermeer, Netherlands, 1988).Google Scholar
  141. 140.
    H. C. Healy, in Proc. First Ann. Fuel Cell Contractors Rev. Mtg (W. H. Huber, ed.), DOE/METC-89/6105 1989, p. 112.Google Scholar
  142. 141.
    M. Farooque, G. Steinfeld, H. Maru, S. Kremenik, and G. McCleary, in Proc. 25th Intersoc. Energy Conv. Eng. Conf., 1990, p. 207.Google Scholar
  143. 142.
    K. A. Trimble, in Proc. 2nd Symp. Molten Carbonate Fuel Cell Technology, PV90-16 (The Electrochemical Society, Pennington, NJ, 1990), p. 36.Google Scholar
  144. 143.
    E. J. Daniels, C. B. Dennis, M. Krumpelt, and V. Minkov, in Abstracts 1988 Fuel Cell Seminar, p. 41.Google Scholar
  145. 144.
    V. Minkov, E. Daniels, C. Dennis, and M. Krumpelt, Abstracts 1986 Fuel Cell Seminar (Tucson, 1986).Google Scholar
  146. 145.
    K. Kinoshita, F. P. McLarnon, and E. J. Cairns, Fuel Cells: A Handbook DOE/METC-88/6096, p. 127ff.Google Scholar
  147. 146.
    M. Ogoshi, T. Yoshida, K. Mochizuki, T. Inoue, M. Tanaka, S. Ohmoto, and T. Ishikawa, IHI Eng. Rev. 31, 435 (1991).Google Scholar
  148. 147.
    L. J. Christiansen and K. Aasberg-Petersen, in Proc. Int. Fuel Cell Conf. (Makuhari, Japan, 1992), p. 231.Google Scholar
  149. 148.
    M. Ogoshi, T. Shimizu, S. Sato, T. Matsuyama, H. Saito, T. Abe, T. Watanabe, Y. Izaki, and Y. Mugikura, IHI Eng. Rev. 24, 1 (1991).Google Scholar
  150. 149.
    Y. Izaki, T. Watanabe, Y. Mugikura, H. Kinoshita, E. Kouda, T. Abe, T. Matsuyama, T. Shimizu, and S. Sato, in Proc. Int. Fuel Cell Conf. (Makuhari, Japan, 1992), p. 243.Google Scholar
  151. 150.
    B. S. Baker and H. G. Ghezel-Ayagh, U.S. patent 4,532,192 (July 30, 1985).Google Scholar
  152. 151.
    M. P. Kang and J. Winnick, J. Appl. Electrochem. 15, 431 (1985).CrossRefGoogle Scholar
  153. 152.
    T. Watanabe, E. Koda, Y. Mugikura, and Y. Izaki, in Proc. 32nd Battery Symp. (Kyoto, Japan, 1991), p. 113.Google Scholar
  154. 153.
    Y. Mugikura, T. Abe, T. Watanabe, Y. Izaki, E. Koda, and H. Kinoshita, in Proc. 32nd Battery Symp. (Kyoto, Japan, 1991), p. 115.Google Scholar
  155. 154.
    Molten Carbonate Fuel Cell System Verification and Scale-Up, Project 1273-1 final report, (United Technologies Corp., S. Windsor, CT, 1985), EPRI EM-4129.Google Scholar
  156. 155.
    H. R. Kunz and L. J. Bregoli, in Proc. 2nd Symp. Molten Carbonate Fuel Cell Technology (J. R. Selman, H. C. Maru, D. A. Shores, and I. Uchida, eds), PV90-16 (The Electrochemical Society, Pennington, NJ, 1990), p. 157.Google Scholar
  157. 156.
    H. R. Kunz, J. Electrochem. Soc. 134, 105 (1987).CrossRefGoogle Scholar
  158. 157.
    S. Kuroe, M. Takeuchi, S. Nishimura, and K. Ohtsuka, in Proc. Int. Fuel Cell Conf. (Makuhari, Japan, 1992), p. 205.Google Scholar
  159. 158.
    In Proc. 3rd Ann. Fuel Cell Contractors Rev. Meeting (W. J. Huber, ed.), DOE/METC-91/6120, 1991, p. 444.Google Scholar
  160. 159.
    P. Grimes, R. Bellows, and M. Zahn, in Electrochemical Cell Design (R. E. White, ed.) (Plenum, New York, 1984).Google Scholar
  161. P. Grimes and R. Bellows, in Electrochemical Cell Design (R. E. White, ed.) (Plenum, New York; 1984), pp. 277–292.CrossRefGoogle Scholar
  162. 160.
    C. Y. Yuh and A. Pigeaud, Determination of Optimum Electrolyte Composition for Molten Carbonate Fuel Cells (Energy Research Corp., Danbury, CT, 1989), DOE/MC/23264-2756.Google Scholar
  163. 161.
    H. C. Maru, M. Farooque, L. Paetsch, C. Y. Yuh, P. Patel, J. Doyon, R. Bernard, and A. Skok, in Proc. Int. Fuel Cell Conf. (Makuhari, Japan, 1992), p. 145 (Fig. 3).Google Scholar
  164. 162.
    H. Urushibata and T. Murahashi, in Proc. Int. Fuel Cell Conf. (Makuhari, Japan, 1992), p. 223.Google Scholar
  165. 163.
    Y. Yamamasu, T. Kakihara, E. Kasai, and T. Morita, in Proc. Int. Fuel Cell Conf (Makuhari, Japan, 1992), p. 161.Google Scholar
  166. 164.
    C. Hirai, M. Matsumura, and T. Tanaka, in Proc. 32nd Battery Symp. (Kyoto, Japan, 1991), p. 21.Google Scholar
  167. 165.
    M. Matsumura, Y. Gonjyo, C. Hirai, and T. Tanaka, in Proc. Int. Fuel Cell Conf (Makuhari, Japan, 1992), p. 247.Google Scholar
  168. 166.
    F. Gmeindl, in Proc. 21st Intersoc. Energy Conv. Eng. Conf, Vol. 2 (American Chemical Society, Washington, D.C., 1986), p. 1129, Fig. 3.Google Scholar
  169. 167.
    W. H. Johnson, in Proc. Second Ann. Fuel Cell Contractors Rev. Meeting (W. J. Huber, ed.), DOE/METC-90/6112, 1990, p. 66.Google Scholar
  170. 168.
    In Proc. 3rd Annual Fuel Cell Contractors Rev. Meeting (W. J. Huber, ed.), DOE/METC-91/6120, 1991, p. 444.Google Scholar
  171. 169.
    H. C. Healy, W. H. Johnson, and C. A. Reiser, in Proc. Int. Fuel Cell Conf (Makuhari, Japan, 1992), p. 261.Google Scholar
  172. 170.
    W. H. Johnson, in Froc. First Ann. Fuel Cell Contractors Rev. Meeting (W. J. Huber, ed.), DOE/METC-89/6105, 1989, p. 105.Google Scholar
  173. 171.
    H. C. Maru, M. Farooque, L. Paetsch, C. Y. Yuh, P. Patel, J. Doyon, R. Bernard, and A. Skok, in Proc. Int. Fuel Cell Conf. (Makuhari, Japan, 1992), p. 145 (Fig. 3).Google Scholar
  174. 172.
    L. G. Marianowski, E. T. Ong, R. J. Petri, and R. J. Remick, Development of Internal Manifold Heat Exchanger (IMHEX®) Molten Carbonate Fuel Cell Stacks (42nd Meeting Int. Soc. Electrochm., Montreux, Switzerland, 1991).Google Scholar
  175. 173.
    A. Suzuki, M. Tooi, M. Hosaka, T. Matsuyama, Y. Masuda, T. Nakane, and T. Osato, in Proc. Int. Fuel Cell Conf. (Makuhari, Japan, 1992), p. 273.Google Scholar
  176. 174.
    S. Takashima, K. Ohtsuka, T. Kahara, M. Takeuchi, Y. Fukui, and H. Fujimura, in Proc. Int. Fuel Cell Conf. (Makuhari, Japan, 1992), p. 265.Google Scholar
  177. 175.
    T. Murahashi, private communication (Mitsubishi Electric Co., 1992).Google Scholar
  178. 176.
    Y. Aoyagi, T. Hashimoto, T. Nishimoto, A. Saiai, Y. Miyake, T. Nakajima, K. Harima, T. Saitoh, H. Yanaru, and H. Fukuyama, in Proc. Int. Fuel Cell Conf. (Makuhari, Japan, 1992), p. 235.Google Scholar
  179. 177.
    H. Urushibata and T. Murahashi, in Proc. Int. Fuel Cell Conf. (Makuhari, Japan, 1992), p. 223.Google Scholar
  180. 178.
    L. Plomp, J. B. J. Veldhuis, E. F. Sitters, F. P. F. van Berkel, and S. B. van der Molen, in Proc. Int. Fuel Cell Conf. (Makuhari, Japan, 1992), p. 157.Google Scholar
  181. 179.
    M. Mayfield, in Proc. Int. Fuel Cell Conf (Makuhari, Japan, 1992).Google Scholar
  182. 180.
    E. A. Gillis, in Proc. Int. Fuel Cell Conf. (Makuhari, Japan, 1992), p. 17.Google Scholar
  183. 181.
    M. P. Whelan, in Proc. Int. Fuel Cell Conf (Makuhari, Japan, 1992), p. 21.Google Scholar
  184. 182.
    K. Hirose, in Proc. Int. Fuel Cell Conf. (Makuhari, Japan, 1992), p. 11.Google Scholar
  185. 183.
    P. Zegers, in Proc. Int. Fuel Cell Conf (Makuhari, Japan, 1992), p. 3.Google Scholar

Copyright information

© Springer Science+Business Media New York 1993

Authors and Affiliations

  • J. R. Selman
    • 1
  1. 1.Illinois Institute of Technology, Department of Chemical EngineeringIllinois Institute of TechnologyChicagoUSA

Personalised recommendations